Computational protocol: A Proteomics and Transcriptomics Investigation of the Venom from the Barychelid Spider Trittame loki (Brush-Foot Trapdoor)

Similar protocols

Protocol publication

[…] MRI was used to obtain a three-dimensional (3D) shape of the venom glands without intrusive dissection or sectioning techniques. For fixation, one specimen was anaesthetized by CO2 for 30 min and the entire prosoma placed in 4% NBF. Prior to imaging, NBF was removed by four one hour of washing steps in phosphate buffered saline (PBS) and incubated overnight in 0.1% Magnevist® (Bayer, Germany) in PBSÓ. After removal of NBF, the sample was submersed in perfluoro-ether Fomblin (Solvay Solexis, Italy) and placed under vacuum to prevent air artifacts. Imaging was performed on a 16.4 T (700 MHz) vertical 89-mm-bore systems (Bruker BioSpin, Rheinstetten, Germany) using a Bruker Micro 2.5 gradient system (2.5 G/cm A) and transmit/receive radiofrequency coils with diameter of 10 mm quadrature birdcage resonator (M2M Imaging, Brisbane, Australia). Bruker ParaVision 5.0 software was used for image acquisition and anatomical images were acquired using a 3D FLASH (Fast Low Angle Shot) gradient echo sequence. The imaging parameters were: TR/TE = 40/8 ms, flip angle 20°, 4–8 excitations. The field-of-view and matrix sized to fit the sample with the resulting voxels having 30 µm isotropic resolution. Total scan time was 12 h. MRI data was processed using Medical Imaging Processing, Analysis, and Visualization v6.0.0 (MIPAV) and 3D image segmentation, surface rendering and volumetric measurements of the glands were performed manually using ITK-SNAP. […]

Pipeline specifications

Software tools ParaVision, MIPAV, ITK-SNAP
Application Magnetic resonance imaging
Diseases Telangiectasis
Chemicals Cysteine, Cystine