Dataset features

Specifications


Application: Gene expression microarray analysis
Number of samples: 8
Release date: Jun 1 2010
Last update date: Sep 18 2012
Access: Public
Chemicals: Nitrogen
Dataset link Mouse EDL Muscle Chronic Electrical Stimulation Study

Experimental Protocol


Stimulation of the mouse hindlimb via the sciatic nerve was used to induce contractions for 4 hours to investigate acute muscle gene activation in a model of muscle phenotype conversion. Initial force production (1.6 + 0.1 g/g body weight) declined 45% within 10 min and was maintained for the remainder of the experiment. Force returned to initial levels upon completion of the study. An immediate-early growth response was present in the EDL (FOS, JUN, ATF3, MAFK) with a similar but attenuated pattern in the soleus. Transcript profiles showed decreased fast fiber specific mRNA (myosin heavy chains 2A, 2B; troponins T3, alpha-tropomyosin, m-creatine kinase) and increased slow transcripts (myosin heavy chain slow/1beta, troponin C, tropomyosin 3gamma) in the EDL. Histological analysis of the EDL revealed glycogen depletion without inflammatory cell infiltration or myofiber damage in stimulated vs. control muscles. Several fiber type specific transcription factors (EYA1, TEAD1, NFATc1 and c4, PPARG, PPARGC1alpha and beta, BHLHB2) increased in the EDL along with transcription factors characteristic of embryogenesis (KLF4, SOX17, TCF15, PKNOX1, ELAV). No established in vivo satellite cell markers or the genes activated during our parallel studies of satellite cell proliferation in vitro (CYCLINS A2, B2, C, E1, MyoD) increased in the stimulated muscles. These data indicated that onset of fast to slow phenotype conversion occurred in the EDL within 4 hours of stimulation without satellite cell recruitment or muscle injury but was driven by phenotype specific transcription factors from resident fiber myonuclei including activation of nascent developmental transcriptional programs.

Repositories


GEO

GSE10454

BioProject

PRJNA113819

Download


Contact


John Krill-Burger