Dataset features


Application: Gene expression microarray analysis
Number of samples: 16
Release date: Dec 31 2012
Last update date: Dec 21 2016
Access: Public
Dataset link Hippocampal gene expression profiling in a rat model of posttraumatic epilepsy reveals temporal upregulation of lipid metabolism-related genes

Experimental Protocol

We employed amygdalar FeCl3 injection to induce chronic, recurrent limbic-type partial seizures with spontaneous secondarily generalized seizures in rats . Sixteen male Wistar rats were kept in hanging cages with unlimited access to food and water and 12-h light-dark cycles. Surgical procedures were conducted following anesthesia with intraperitoneal (i.p.) sodium pentobarbital injections (37.5 mg/kg) at 5 weeks of age. Stereotaxic coordinates were determined with the rat brain atlas. The incisor bar was set 3.3 mm below the interaural line. While under anesthesia, a polyethylene tube containing a stylet to serve as an external guide cannula (1.09-mm outer diameter (o.d.), 0.55-mm inner diameter (i.d.), 2.5 cm in length) was stereotaxically implanted and anchored to the skull with miniature screws and dental cement. The cannula was fixed 5.6 mm anterior and 4.8 mm to the right of the lambda and 8.5 mm below the surface of the skull, positioning it at the right amygdaloid body. Randomly selected rats for in vivo microdialysis to estimate redox had guide cannula placed but were prepared without dental cement on the skull where the microdialysis guide cannula was to be placed. Five days later, the stylet was replaced with an internal delivery cannula (0.5 mm o.d., 0.25 mm i.d.). FeCl3 was dissolved in saline solution (100 mM, pH 2.2). FeCl3 solution (1.0 μl) was injected through the inner cannula by means of a microinfusion pump (EP-60; Eicom, Tokyo, Japan) set at a rate of 1.0 μl/min (Fe group; n = 12). The external guide cannula was used for electroencephalogram (EEG) recording with an electroencephalograph (type 1A63; SAN-EI, Tokyo, Japan). Rats in the control group (n = 4) were each injected with 1.0 μl saline (pH 2.2). Both EEG and behavior were observed for at least 6 h after the injection. While we did not measure the rate or frequency of seizures, we did confirm that the animals had recurrent seizures. These observations and the acute recording confirmed the accuracy of the amygdalar injection. No seizure activity was observed in control group rats. Animals in the control group were sacrificed by cervical dislocation 15 days after amygdalar injection. Animals in the Fe group were subdivided into 3 groups and were sacrificed at 5 (acute phase), 15 (sub-chronic phase of injury), and 30 days (chronic phase of injury) after amygdalar injection. The stages of disease development were categorized according to the EEGs of the model rats; within 5 days after amygdalar injection, epileptiform discharges were recorded in the contralateral and ipsilateral amygdalae; by 15 days after injection, interictal spike discharges were more consistently observed in the contralateral uninjected amygdala; at 30 days after injection bilateral interictal spike discharges continued to be observed. After sacrifice, the right hippocampi were immediately removed and placed in ice-cold phosphate-buffered saline and homogenized (Polytron PT 3000; Brinkmann Instruments, Inc., Westbury, NY, USA) for RNA extraction.