Computational protocol: A novel circular invasion assay mimics in vivo invasive behavior of cancer cell lines and distinguishes single-cell motility in vitro

Similar protocols

Protocol publication

[…] Time-lapse images were further processed using Java's ImageJ software (Wayne Rasband, National Institutes of Health, Bethesda, MD). Appropriate pairs of corresponding images were overlaid and compared to one another, to determine the difference between the pseudo-color applied areas measured from the original time point (0 h), to the final time point of interest (4, 6, 8, 12, or 24 h). This difference (in pixels) was then calculated and presented in terms of percent wound closure, or invasion measured. [...] Each cell line was sampled at least 8 times for each method (N = 8–32; Power = 0.94–1.00), over the course of 10 days (N = 1–4 days per line). Wound repair data are referenced to time point 0 h, with results presented as mean percent wound closure (out of 100%) after a given period of time ± standard deviation. To avoid confounding problems with multiple analyses along the time-response curve, final differences were only analyzed at 4, 6, 8, 12, and 24 h. Differences between cell lines were examined using Student's t-tests, and were considered significant when P < 0.05. To further compare the two methods, post-hoc analysis (ANOVA) was performed for all parameters (method, treatment, time) using SPSS, Version 16 (SPSS Inc., Chicago, IL). Post-hoc power analyses were also performed for each set of experiments using G*Power 3 (E. Erdfelder, F. Faul and A. Buchner; University of Trier). […]

Pipeline specifications

Software tools ImageJ, SPSS, G*Power
Applications Miscellaneous, Microscopic phenotype analysis
Diseases Neoplasms