Dataset features

Specifications


Application: Gene expression microarray analysis, miRNA array analysis
Number of samples: 14
Release date: May 5 2010
Last update date: Aug 31 2012
Access: Public
Taxon: Sus scrofa, Homo sapiens
Dataset link Deciphering the porcine intestinal microRNA transcriptome

Experimental Protocol


RNA isolation from porcine intestinal tissue Intestinal samples (~ 2 cm circle segments) were taken from duodenum, proximal and distal jejunum, ileum, ascending and transverse colon of four 31 days old healthy piglets (EUROC x Pietrain). The piglets were weaned at the age of 28 days. Samples were quick-frozen in liquid nitrogen and stored at -80 °C. In order to obtain representative measurements in each intestinal locus, three cross sections of approximately 2 mm out of the 2 cm segment of frozen intestine were examined. These 3 sections were pooled and total RNA was isolated from samples using an automated homogenizer (FastPrep Instrument, MP Biomedicals, Heidelberg, Germany) and the mirVana miRNA Isolation Kit (Applied Biosystems, Darmstadt, Germany), according to the manufacturer’s protocol. The RNA quality and quantity of all samples were proven using the Agilent 2100 Bioanalyzer and the RNA 6000 Nano Kits (Agilent, Waldbronn, Germany) and the Nanodrop 1000 Spectrophotometer (Thermo Scientific, MA, USA). Microfluidic miRNA microarrays Microfluidic microarray experiments were performed using customized Geniom biochips (febit). Customized microarrays were synthesized with the Geniom One device (febit) applying febit’s standard shortmer kit for oligonucleotide synthesis. The light-activated in situ oligonucleotide synthesis using a digital micromirror device was performed within the Geniom One instrument on an activated three-dimensional reaction carrier consisting of a glass-silicon-glass sandwich (biochip). Using standard DNA synthesis reagents and 3’-phosphoramidites carrying 5’-photolabile protective group, oligonucleotides were synthesized in parallel in eight individually accessible microchannels (referred to as microarrays) of one biochip. Prior to synthesis, the glass surface was activated by coating with spacer to facilitate probe-target interaction and to avoid probe-probe interface [37]. Two different microarray designs were used. The first one included only the 399 miRDeep predicted mature miRNAs and their star sequences in seven replicates allowing highly accurate validation of the miRDeep prediction plus 16 spike-in controls. The second design consisted of 1117 features in triplicate, including the identified conserved porcine mature miRNA sequences (18 mapping to the porcine genome and another 124, which did not map), 74 known porcine and 885 human miRNAs from miRBase (13.0) and 16 spike-in controls. For microarray experiments, intestinal total RNA samples from different loci of four subjects were isolated independently and respective pools of total RNA samples were prepared. All pools underwent a second quality control to determine the quality and quantity using the Agilent 2100 Bioanalyzer and the RNA 6000 Nano Kit according to the manufacturer’s instructions. For each microarray 250 ng of total RNA were suspended in 25 µl of febit’s proprietary miRNA hybridization buffer. The hybridization was performed automatically for 16h at 42°C using the Geniom RT-Analyzer (febit). After stringent washing a microfluidic-based extension assay was performed to label the miRNAs using biotinylated nucleotides. After washing, biotinylated nucleotides were detected by streptavidin-phycoerythrin and signal recognition and calculation were done automatically within milliseconds. The background of the chips was effectively corrected by global background subtraction and inter-array effects were corrected by variance stabilizing normalization.

Repositories


GEO

GSE21628

ArrayExpress

E-GEOD-21628

BioProject

PRJNA127107

Download


Contact


Soroush Sharbati

Dataset Statistics

info

Citations per year

Dataset publication