Computational protocol: The Role of Emotion Regulation in Reducing Emotional Distortions of Duration Perception

Similar protocols

Protocol publication

[…] The experiment was run and participants’ responses recorded using E-Prime 1.1 (Psychological Software Tools, Pittsburgh, PA, United States) on a PC. The stimuli were presented using a 17” LCD monitor (1,024 × 768 pixels, 60-Hz) and the participants made their responses using the computer’s keyboard. The participants were seated in a quiet room approximately 60 cm from the pictures, with horizontal and vertical visual angles of below 16°.The experiment consisted of two parts: emotion regulation and duration perception. In the emotion regulation part, participants in each group were provided with one of three sets of instructions in writing (nonregulation, reappraisal, or suppression), which they silently deliberated on for 1 min. The nonregulation instruction asked participants to passively perceive the emotions arising in response to the pictures. The reappraisal instruction asked participants to intentionally reappraise that the pictures had been created by a computer program and did not depict true events. Finally, the suppression instruction asked participants to intentionally suppress their expressions when a picture appeared on the screen.In the duration perception part, the temporal bisection task, which has been used widely in previous studies, was adopted. The procedure was similar to that described in earlier research (; ). The participants were initially trained to differentiate “short” (400 ms) from “long” (1,600 ms) stimulus durations. On the first 10 trials, the image of a brown rectangle appeared for a short or a long duration in a random sequence along with a corresponding Chinese character for “short” or “long” marked underneath it. The participants were asked to remember and be ready to differentiate between “short” and “long” durations. Following the training, a test was conducted to confirm that the training had been effective. In the test, the participants were asked to indicate whether the stimulus appeared for either a short or a long stimulus duration by pressing one of two labeled keys (“j” and “f”) on the keyboard. The response mapping (e.g., “j” and “f” for the short and long duration images, respectively) was counterbalanced across the participants. To avoid any potential encouragement- or frustration-induced emotion, no feedback was provided during the test. If a participant’s accuracy did not reach 100%, he/she was trained again. Participants were given a 2-min break between the post-training test and the main test. During the main test, negative and neutral pictures were randomly presented for seven durations (400, 600, 800, 1,000, 1,200, 1,400, and 1,600 ms), see Figure . Each picture was presented for each duration. Accordingly, 224 trials were conducted. The participants were asked to look at each picture and indicate whether it had appeared for a duration that was closer to either the short or the long duration previously learned. To avoid the possible effects of fatigue on the results, three 1-min breaks were given following trials 56, 112, and 168. Each break was followed by the emotion regulation instruction and a long–short training to consolidate the effectiveness of training. No more tests were conducted to confirm training effect. At the end of the temporal bisection task, the participants were asked to respond to a question – “Did you follow the instructions given to you for judging the duration?” (given here in English, but actually presented in Chinese; the same was true with the next question) on a seven-point scale (from 1 = “not at all” to 7 = “completely”). They were also required to answer the question “How much effort did you exert to regulate (or suppress or reappraise) the emotions arising in you in response to the picture?” on a seven-point scale (from 1 = “not at all” to 7 = “completely”). The words “regulate,” “suppress,” or “reappraise” were presented for the nonregulation, suppression, and reappraisal groups, respectively. [...] The temporal bisection task was analyzed by computing the proportion of long duration responses for each stimulus duration. If the stimulus duration was represented as “t,” the proportion of long duration responses was designated as P(long|t). A plot of the proportions formed a psychometric function that was described as a Gaussian cumulative distribution function (S) curve. The start of the resulting S curve was at approximately zero, representing the shortest durations, and its end was at approximately 1, representing the longest durations. The resulting curves were fitted with a cumulative Gaussian function, with the mean (μ) corresponding to the “Point of Subject Equality” (PSE) and the SD (σ) corresponding to the temporal sensitivity. The PSE was the duration that yielded no difference between long and short responses, that is, P(long|t = μ) = 0.5 (; ). The generalization gradients related to the proportion of “long” responses to stimulus duration were fitted via cumulative Gaussian functions with the following equation:where y is the proportion of “long” responses, x is the objective duration, and erf is the error function or Gauss error function. The proportion of “long” responses was plotted as a function of stimulus duration for the three groups. The lines were the best-fit cumulative Gaussian, see Figure .Statistical analysis was performed using SPSS Statistics 20.0 (Armonk, NY, United States). The significance level was set at 0.05. Repeated-measures ANOVAs were performed on the PSE measurements with group (nonregulation, reappraisal, and suppression) and picture type (neutral, negative) as factors. Post hoc testing of the significant main effects was conducted using the LSD method. Significant interactions were analyzed using simple effects models. Partial η-squared (ηp2) was reported as a measure of effect size for the ANOVAs, with 0.05, 0.10, and 0.20 indicating a small, medium, and large effect, respectively. […]

Pipeline specifications

Software tools E-Prime, SPSS
Applications Miscellaneous, Neuropsychology analysis
Organisms Homo sapiens