Computational protocol: The role of medial prefrontal cortex in the working memory maintenance of one’s own emotional responses

Similar protocols

Protocol publication

[…] Preprocessing steps, as well as subsequent statistical analyses, were performed using SPM12 (Wellcome Department of Cognitive Neurology, London, UK; for all MRI scans. Using standard algorithms, raw functional images were realigned, unwarped, and coregistered to each subject’s MPRAGE image. The images were then normalized to Montreal Neurological Institute (MNI) coordinate space, spatially smoothed to 6 mm (full-width at half maximum), and resliced to 2 × 2 × 2 mm voxels. The standard canonical hemodynamic response function in SPM was used, and low-frequency confounds were minimized with a 128-second high-pass filter. Serial autocorrelation was further corrected using the AR(1) function. The Artifact Detection Tool (ART; was also used to regress out scans as nuisance covariates in the first-level analysis (threshold: 3 SD in mean global intensity and scan-to-scan motion that exceeded 1.0 mm). [...] For each participant, a general linear model was specified to contrast activation during the maintenance period between the “Emotion,” “Image,” and “Rest” conditions. Contrasts involving the “Body” condition will be reported in a separate manuscript (in preparation). Each trial was modeled as a 5-second interval. Motion regressors (generated by ART – see image processing above) were also added to each of these 1st-level designs. These contrast images were then entered into second-level SPM analyses (one-sample T-tests) to assess the main effect of each contrast of interest. The first contrast was “Emotion > Image,” which should highlight all regions activated by maintaining emotions that are not also activated by maintaining visual information. The second contrast was “Emotion > Rest,” which should highlight all regions activated by maintaining one’s own emotions (i.e., relative to a period involving no WM maintenance). The third contrast was “Image > Rest,” which should highlight all regions activated by maintaining the visual images (i.e., relative to no WM maintenance). The latter two contrasts, and their inverses, were analyzed in order to allow for more thorough interpretation of the primary “Emotion > Image” contrast, which itself replicates the contrasts done between emotion-focused and vision-focused attention (e.g. ref.) and WM in previous studies. Finally, conjunction analyses were performed (within a Flexible Factorial model in SPM12) to confirm regions of activation common to (1) the “Emotion > Rest” and “Image > Rest” contrasts, and (2) the “Rest > Emotion” and “Rest > Image” contrasts. These conjunction analyses were performed using SPM12’s “conjunction null” function.For these analyses we set a whole-brain peak significance threshold of p < 0.001 (uncorrected), and a cluster extent threshold of p < 0.05 (false discovery rate [FDR] corrected). The first eigenvariate across subjects was also extracted from the dACC cluster found in the “Emotion > Image” contrast (using SPM12’s built-in volume-of-interest [VOI] time-series extraction tool; see results section) that was closest to the region observed in previous EA studies,, and this was correlated with our two EA measures (described further below). Cluster identification/labeling was done in conjunction with the Automated Anatomical Labeling (AAL) atlas within SPM12. […]

Pipeline specifications

Software tools SPM, AAL
Application Magnetic resonance imaging
Organisms Homo sapiens