Computational protocol: Burkholderia Type VI Secretion Systems Have Distinct Roles in Eukaryotic and Bacterial Cell Interactions

Similar protocols

Protocol publication

[…] Annotated genomes were downloaded from the Genome Reviews ftp site (, January 2010, 926 bacterial genomes (1814 chromosomes and plasmids) . Protein sequences from all genomes were aligned with rpsblast against the COG section of the CDD database (January 2010) . Only proteins showing an alignment covering at least 30% of the COG PSSM with an E-value ≤10−6 were retained. To avoid any errors in COG assignments, we discarded all hits that overlap with another hit with a better E-value on more than 50% of its length. We considered the following 13 COGs as ‘T6SS core components’: COG0542, COG3157, COG3455, COG3501, COG3515, COG3516, COG3517, COG3518, COG3519, COG3520, COG3521, COG3522, COG3523 , . Two genes were considered neighbours if they are separated by less than 5000 bp. Only clusters containing the VipA protein (COG3516) and genes coding for at least five other T6SS core components were included in the analyses. The Edwardsiella tarda (EMBL access AY424360) system was added manually because the complete genome sequence and annotation of this organism was unavailable in Genome Reviews.In three of the 334 T6SS clusters, two VipA coding genes were identified. Manual inspection of two of these clusters in Acinetobacter baumannii (ATCC 17978) and Vibrio cholerae (ATCC 39541) revealed that they resulted from apparent gene fissions; in both cases we kept the longest fragment corresponding to the C-terminal part of the full length protein. In the third case, Psychromonas ingrahamii (strain 37), the two VipA coding genes resulted from an apparent duplication event: one of the two copies showed a high mutation frequency and was discarded. In total, we included 334 VipA orthologs in T6SS clusters. The 334 VipA protein sequences were aligned using muscle . Based on this alignment, a neighbour-joining tree with 100 bootstrap replicates was computed using BioNJ . […]

Pipeline specifications

Software tools BLASTN, MUSCLE, BIONJ
Applications Phylogenetics, Nucleotide sequence alignment
Organisms Mus musculus, Burkholderia thailandensis, Pseudomonas putida, Serratia proteamaculans
Diseases Melioidosis