Dataset features


Application: aCGH data analysis
Number of samples: 21
Release date: May 5 2010
Last update date: Mar 21 2012
Access: Public
Diseases: Breast Diseases, Neoplasms, Glandular and Epithelial, Carcinoma, Ductal, Breast, Cervical Intraepithelial Neoplasia, Carcinoma, Ductal
Chemicals: Paraffin
Dataset link Array comparative genomic hybridization analysis of flat epithelial atypia (DIN1a) and lobular intraepithelial neoplasia

Experimental Protocol

In this study, 11 cases of classic lobular intraepithelial neoplasias and 10 cases with several areas of low grade flat DIN (DIN1a or flat epithelial atypia) were analyzed by array CGH. Sections of formalin-fixed paraffin-embedded (FFPE) specimens cut at 7-8µm were mounted on special foil-coated slides (Molecular Devices, San Diego, USA). The sections were then deparaffinized with Xylene, processed in decreasing concentrations of ethanol and stained with haematoxylin. Lasercapture microdissection for both lesions was performed at multiple sites using Veritas Arcturus. For reference-DNA, female mammary tissue without histomorphological changes obtained from reduction mammoplasty specimens was procecessed and laser-microdissected as explained above. Cells were digested in 10µl TE, pH 9, and 0.5µl proteinase K (20mg/ml) for 48h at 55°C. After inactivation of proteinase K at 99°C for 10min, the digest was stored at -20°C. Without any further purification, the complete digest was used for whole genome amplification by means of the WGA (Whole Genome Amplification) kit from Sigma following the manufacturer’s recommendations. Array CGH was performed as described previously. In brief, two µg of amplified tumor and reference DNA were labelled by random priming (BioPrime® Total Genomic Labeling System, Invitrogen, Carlsbad, CA) with Alexa Fluor® 3 and Alexa Fluor® 5, respectively, and hybridized onto a tiling path BAC array, consisting of the human 32k BAC Re-Array Set (BACPAC Resources Center;; DNA kindly provided by Pieter de Jong) and a 1Mb Resolution BAC set (clones kindly provided by Nigel Carter, Wellcome Trust Sanger Centre). All protocols are provided in detail on our website ( and more information concerning this platform have been submitted to the Gene Expression Omnibus (GEO;; GPL5114). For the analysis and visualization of array CGH data, our software-package CGH-PRO was employed. No background subtraction was applied. Raw data were normalized by “Subgrid LOWESS”. For the assessment of copy number gains and losses, we used circular binary segmentation in combination with log2 ratio thresholds of 0.15 and -0.15, respectively.










Reinhard Ullmann