Unlock your biological data


Try: RNA sequencing CRISPR Genomic databases DESeq

1 - 15 of 15 results
filter_list Filters
healing Disease
settings_input_component Operating System
tv Interface
computer Computer Skill
copyright License
1 - 15 of 15 results
Allows studying of spatial patterning of gene expression at the single-cell level. Seurat is an R package that enables quality control (QC), analysis, and exploration of single cell RNA-seq data. The software includes three computational methods: (1) unsupervised clustering and discovery of cell types and states, (2) spatial reconstruction of single cell data, and (3) integrated analysis of single cell RNA-seq across conditions, technologies, and species. It can also localize rare subpopulations, and map both spatially restricted and scattered groups.
An easy-to-use application for microarray, RNA-Seq and metabolomics analysis. For splicing sensitive platforms (RNA-Seq or Affymetrix Exon, Gene and Junction arrays), AltAnalyze will assess alternative exon (known and novel) expression along protein isoforms, domain composition and microRNA targeting. In addition to splicing-sensitive platforms, AltAnalyze provides comprehensive methods for the analysis of other data (RMA summarization, batch-effect removal, QC, statistics, annotation, clustering, network creation, lineage characterization, alternative exon visualization, gene-set enrichment and more).
Provides a linear model and normality based transformation method. Linnorm is an R package for the analysis of RNA-seq, scRNA-seq, ChIPseq count data or any large-scale count data. It transforms such datasets for parametric tests. Some pipelines are implemented: (i) library size/batch effect normalization, (ii) cell sub-population analysis and visualization, (iii) differential expression analysis or differential peak detection, (iv) highly variable gene discovery and visualization, (v) gene correlation network analysis and visualization, (vi) stable gene selection for scRNA-seq data and (vii) data imputation.
Models time series accounting for noise in the temporal dimension. This R package implements the DeLorean model to estimate pseudotimes for cell expression data. The DeLorean model uses a Gaussian process latent variable model to model uncertainty in the capture time of cross-sectional data. This method was specifically designed for single cell transcriptome experiments. It was fit to three separate datasets each using a different biological assay (microarrays, single cell nCounter and single cell RNA-seq) in three organisms (human, mouse and Arabidopsis).
Makes analysis more broadly accessible to researchers. Granatum is a web browser based scRNAseq analysis pipeline that conveniently walks the users through various steps of scRNA-seq analysis. It has a comprehensive list of modules, including plate merging and batch effect removal, outlier sample removal, gene filtering, gene expression normalization, cell clustering, differential gene expression analysis, pathway/ontology enrichment analysis, protein network interaction visualization, and pseudo-time cell series construction.
SINCERA / SINgle CEll RNA-seq profiling Analysis
A generally applicable analytic pipeline for processing single-cell RNA-seq data from a whole organ or sorted cells. SINCERA provides a panel of analytic tools for users to conduct data filtering, normalization, clustering, cell type identification, and gene signature prediction, transcriptional regulatory network construction and important regulatory node identification. The pipeline enables RNA-seq analysis from heterogeneous single cell preparations after the nucleotide sequence reads are aligned to the genome of interest.
Sake / Single-cell RNA-Seq Analysis and Klustering Evaluation
Assists in navigating through the expression profile. SAKE is an R package that uses non-negative matrix factorization (NMF) method for unsupervised clustering. It offers (i) quality controls modules to compare total sequenced reads to total gene transcripts detected, (ii) sample correlation heatmap plot, (iii) heatmap of sample assignment from NMF run, with dark red indicating high confidence in cluster assignments, and (iv) t-distributed stochastic neighbor embedding (t-SNE) plot to compare NMF assigned groups with t-SNE projections.
ascend / Analysis of Single Cell Expression, Normalisation and Differential expression
Allows creation of workflow for the analysis of Single cell RNA sequencing (scRNA-seq) experiments. ascend can handle data generated from any single cell library preparation platform. It includes functions to leverage multiple CPUs, allowing most analyses to be performed on a standard desktop or laptop. In summary, this tool implements a state-of-the-art unsupervised clustering method and integrates established analysis techniques for normalization and differential gene expression.
PIVOT / Platform for Interactive analysis and Visualization Of Transcriptomics data
Allows users to analyze and visualize RNA-Seq data. PIVOT furnishes four mains functionalities (i) a graphical interface that is able to wrap existing open source packages in a single user-interface (ii) multiple tools to manipulate datasets to perform derivation or normalization (iii) a way for allowing the compatibility between inputs and outputs from different analysis modules and, (iv) functions for automatically generate reports, publication-quality figures, and reproducible computations.
0 - 0 of 0 results
1 - 2 of 2 results
filter_list Filters
computer Job seeker
Disable 2
thumb_up Fields of Interest
public Country
language Programming Language
1 - 2 of 2 results