GuiltyTargets specifications
Information
Unique identifier | OMICS_33793 |
---|---|
Name | GuiltyTargets |
Software type | Application/Script |
Interface | Command line interface |
Restrictions to use | None |
Input data | A protein-protein interaction network, an experiment file, a list of Entrez ids of known targets and a configuration file. |
Operating system | Unix/Linux |
Programming languages | Python |
License | MIT License |
Computer skills | Advanced |
Stability | Stable |
Requirements |
numpy, pandas, python, _igraph, scipy, scikit-learn, click, tqdm, easy-config, GAT2VEC
|
Maintained | Yes |
Download
Versioning
Add your version
Maintainer
- person_outline Holger Fröhlich <>
Publication for GuiltyTargets
library_books
GuiltyTargets: Prioritization of Novel Therapeutic Targets with Deep Network Representation Learning.
2019 BioRxiv
DOI: 10.1101/521161
GuiltyTargets institution(s)
Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, Germany; Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Bonn, Germany; UCB Biosciences GmbH, Monheim, Germany
GuiltyTargets funding source(s)
Supported by Fraunhofer-Gesellschaft.
GuiltyTargets reviews
Be the first to review GuiltyTargets