Haystack statistics

To access cutting-edge analytics on consensus tools, life science contexts and associated fields, you will need to subscribe to our premium service.

Subscribe
info

Citations per year

Citations chart
info

Popular tool citations

chevron_left Noncoding variant effect prediction Cis-regulatory module prediction chevron_right
Popular tools chart
info

Tool usage distribution map

Tool usage distribution map
info

Associated diseases

Associated diseases

Haystack specifications

Information


Unique identifier OMICS_22202
Name Haystack
Software type Package/Module
Interface Command line interface
Restrictions to use None
Input data The genome-wide distributions of an epigenetic mark across multiple cell types or subjects as well as gene expression profiles quantified by microarray or RNA-seq.
Operating system Unix/Linux, Mac OS, Windows
Programming languages Python
Computer skills Advanced
Version 0.5.4
Stability Stable
Requirements
aws, python, bedtools, scipy, numpy, conda, matplotlib, bioconda, pandas, sambamba, miniconda, anaconda, bx-python, webgraph, meme 4.11.2
Maintained Yes

Download


Versioning


Add your version

Maintainers


  • person_outline Guo-Cheng Yuan <>
  • person_outline Luca Pinello <>

Publication for Haystack

Haystack institution(s)
Department of Molecular Pathology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical, School, Boston, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Harvard School of Public Health, Boston, MA, USA
Haystack funding source(s)
Supported by National Institutes of Health award R00HG008399 and R01HG009663.

Haystack reviews

star_border star_border star_border star_border star_border
star star star star star

Be the first to review Haystack