1 - 47 of 47 results

SV-STAT / Structural Variation detection by STAck and Tail

star_border star_border star_border star_border star_border
star star star star star
(2)
Quantifies evidence for structural variation in genomic regions suspected of harboring rearrangements. SV-STAT extends existing methods by adjusting a chimeric read’s support of a structural variation by (i) the number of its soft-clipped bases and (ii) the quality of its alignment to the junction. SV-STAT is more accurate than alternative methods for determining base-pair resolved breakpoints. SV-STAT is a significant advance towards accurate detection and genotyping of genomic rearrangements from DNA sequencing data.

SVTyper

New
Assists users to infer an underlying genotype at each structural variants (SVs). SVTyper is a Bayesian likelihood algorithm that can operate on copy-neutral events such as inversions and translocations as well as copy number variants (CNVs). It permits the production of SV genotypes, useful for meaningful variant interpretation, as well as quantitative estimates of breakpoint allele frequencies that allow inference of the fraction of tumor cells that carry a particular variant.

PEMer

A computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. The package is composed of three modules, PEMer workflow, SV-Simulation and BreakDB. PEMer workflow is a sensitive software for detecting SVs from paired-end sequence reads. SV-Simulation randomly introduces SVs into a given genome and generates simulated paired-end reads from the ‘novel’ genome. Subsequent analysis with PEMer workflow on the simulated reads can facilitate parameterize PEMer workflow. BreakDB is a web accessible database developed to store, annotate and dsplay SV breakpoint events identified by PEMer and from other sources.

VarDict

A versatile variant caller for both DNA- and RNA-sequencing data. VarDict contains many features that are distinct from other variant callers, including linear performance to depth, intrinsic local realignment, built-in capability of de-duplication, detection of polymerase chain reaction (PCR) artifacts, accepting both DNA- and RNA-seq, paired analysis to detect variant frequency shifts alongside somatic and loss of heterozygosity (LOH) variant detection and structural variant (SV) calling. VarDict facilitates application of next-generation sequencing in cancer research, enabling researchers to use one tool in place of an alternative computationally expensive ensemble of tools.

PSSV

A probabilistic method for somatic structural variation (SV) prediction by jointly modeling discordant and concordant read counts. PSSV is specifically designed to predict somatic deletions, inversions, insertions and translocations by considering their different formation mechanisms. Simulation studies demonstrate that PSSV outperforms existing tools. PSSV has been successfully applied to breast cancer data to identify somatic SVs of key factors associated with breast cancer development.

inGAP-sv

Detects and visualizes structural variation from paired-end mapping data. Under this scheme, abnormally mapped read pairs are clustered based on the location of a gap signature. Several important features, including local depth of coverage, mapping quality and associated tandem repeat, are used to evaluate the quality of predicted structural variation. Compared with other approaches, it can detect many more large insertions and complex variants with lower false discovery rate. Moreover, inGAP-sv, written in Java programming language, provides a user-friendly interface and can be performed in multiple operating systems.

Sniffles

Provides a structural variation (SV) caller for long reads. Sniffles is mainly designed for PacBio reads, but also works on Oxford Nanopore reads. SV are larger events on the genome (e.g. deletions, duplications, insertions, inversions and translocations). Sniffles can detect all of these types and more such as nested SVs (e.g. inversion flanked by deletions or an inverted duplication). Furthermore, Sniffles incorporates multiple auto tuning functions to determine data set depending parameter to reduce the overall risk of falsely infer SVs.

SVelter

Identifies regions of the genome suspected to harbor a complex event. SVelter then resolves the structure by iteratively rearranging the local genome structure, in a randomized fashion, with each structure scored against characteristics of the observed sequencing data. SVelter is able to accurately reconstruct complex chromosomal rearrangements when compared to well-characterized genomes that have been deeply sequenced with both short and long reads. SVelter is able to interrogate many different types of rearrangements, including multi-deletion and duplication-inversion-deletion events as well as distinct overlapping variants on homologous chromosomes.

BreaKmer

forum (1)
An approach that uses a 'kmer' strategy to assemble misaligned sequence reads for predicting insertions, deletions, inversions, tandem duplications and translocations at base-pair resolution in targeted resequencing data. Variants are predicted by realigning an assembled consensus sequence created from sequence reads that were abnormally aligned to the reference genome. Using targeted resequencing data from tumor specimens with orthogonally validated SV, non-tumor samples and whole-genome sequencing data, BreaKmer had a 97.4% overall sensitivity for known events and predicted 17 positively validated, novel variants.

SRinversion

A framework to analyze poorly mapped or unmapped reads by splitting and re-aligning them for the purpose of inversion detection. SRinversion consists of 4 steps: 1) extract poorly mapped reads, 2) split or convert reads, 3) re-map reads, and 4) inversion region detection. SRinversion is very sensitive to small inversions and can detect those less than 10bp in size. We applied SRinversion to both simulated data and high-coverage sequencing data from the 1000 Genomes Project and compared the results with those from Pindel, BreakDancer, DELLY, Gustaf and MID. A better performance of SRinversion was achieved for both datasets for the detection of small inversions.

SV-Bay

Detects structural variants in cancer using whole genome sequencing data with or without matched normal control sample. SV-Bay does not only use information about abnormal read mappings but also assesses changes in the copy number profile and tries to associate these changes with candidate SVs. The likelihood of each novel genomic adjacency is evaluated using a Bayesian model. In its final step, SV-Bay annotates genomic adjacencies according to their type and, where possible, groups detected genomic adjacencies into complex SVs as balanced translocations, co-amplifications, and so on. A comparison of SV-Bay with BreakDancer, Lumpy, DELLY and GASVPro demonstrated its superior performance on both simulated and experimental datasets.

Manta

Calls structural variants (SVs) and indels from mapped paired-end sequencing reads. Manta is optimized for analysis of individuals and tumor/normal sample pairs, calling SVs, medium-sized indels and large insertions within a single workflow. The method is designed for rapid analysis on standard computer hardware: NA12878 at 50x genomic coverage is analyzed in less than 20 minutes on a 20 core server, most WGS tumor-normal analyses can be completed within 2 hours. Manta combines paired and split-read evidence during SV discovery and scoring to improve accuracy, but does not require split-reads or successful breakpoint assemblies to report a variant in cases where there is strong evidence otherwise. It provides scoring models for germline variants in individual diploid samples and somatic variants in matched tumor-normal sample pairs.

MID / Micro-Inversion Detector

Identifies micro-inversions (MIs) in human genomes using next-generation sequencing reads. The algorithm of MID is designed based on a dynamic programming path-finding approach. What makes MID different from other variant detection tools is that MID can handle small MIs and multiple breakpoints within an unmapped read. Moreover, MID improves reliability in low coverage data by integrating multiple samples. Our evaluation demonstrated that MID outperforms Gustaf, which can currently detect inversions from 30 bp to 500 bp.

MetaSV

An integrated structural variation (SV) caller which leverages multiple orthogonal SV signals for high accuracy and resolution. MetaSV proceeds by merging SVs from multiple tools for all types of SVs. It also analyzes soft-clipped reads from alignment to detect insertions accurately since existing tools underestimate insertion SVs. Local assembly in combination with dynamic programming is used to improve breakpoint resolution. Paired-end and coverage information is used to predict SV genotypes.

SV-AUTOPILOT / Structural Variation AUTOmated PIpeLine Optimization Tool

Obsolete
Standardizes the Structural Variation (SV) detection pipeline. SV-AUTOPILOT is a pipeline that can be used on existing computing infrastructure in the form of a Virtual Machine (VM) Image. It provides a “meta-tool” platform for using multiple SV-tools, to standardize benchmarking of tools, and to provide an easy, out-of-the-box SV detection program. In addition, the user can choose which of several alignment algorithms is used in their analysis.

MUMdex / Maximal Unique Matchdex

A package for aligning sequences to a reference genome. MUMdex consists of an aligner, an alignment format, an analysis software and a portable population database of common structural variants to aid filtering. The aligner saves read pair information in an indexed lossless compact binary format as MUMs plus the sequence not covered by MUMs. MUMdex computes a numerical invariant for each pair of MUMs and, depending of the value, signals either genome rearrangements (inversions, translocations or indels) or problems in the reference genome. It can also detect single nucleotide polymorphisms (SNPs), but less efficiently than standard methods.

DIGTYPER / Duplication and Inversion GenoTYPER

A method to genotype tandem duplications and inversions. DIGTYPER computes genotype likelihoods for a given inversion or duplication and reports the maximum likelihood genotype. In contrast to purely coverage-based approaches, DIGTYPER uses breakpoint-spanning read pairs as well as split alignments for genotyping, enabling typing also of small events. We tested our approach on simulated and on real data and compared the genotype predictions to those made by DELLY, which discovers SVs and computes genotypes. DIGTYPER compares favorable especially for duplications (of all lengths) and for shorter inversions (up to 300 bp). In contrast to DELLY, our approach can genotype SVs from data bases without having to rediscover them.

Ulysses

A tool that achieves drastically higher detection accuracy than existing tools, both on simulated and real mate-pair sequencing datasets from the 1000 Human Genome project. Ulysses achieves high specificity over the complete spectrum of variants by assessing, in a principled manner, the statistical significance of each possible variant (duplications, deletions, translocations, insertions and inversions) against an explicit model for the generation of experimental noise. This statistical model proves particularly useful for the detection of low frequency variants. SV detection performed on a large insert Mate-Pair library from a breast cancer sample revealed a high level of somatic duplications in the tumor and, to a lesser extent, in the blood sample as well.

SHEAR / Sample Heterogeneity Estimation and Assembly by Reference

A tool for next-generation sequencing data analysis that predicts SVs, accounts for heterogeneous variants by estimating their representative percentages, and generates personal genomic sequences to be used for downstream analysis. By utilizing structural variant detection algorithms, SHEAR also offers improved performance in the form of a stronger ability to handle difficult structural variant types and improved computational efficiency.

SVmine

Employs a two-stage process to evaluate and refine structural variation (SV) predictions. SVmine is an algorithm for further mining of SV predictions from multiple algorithms to improve the sensitivity, specificity and breakpoint resolution of SV detection. It first performs quality evaluation and filters low quality SV predictions. Then, it refines breakpoint positions of the high quality SVs by performing precise “sandwich” realignments of soft-clipped reads. The realignment strategy used by SVmine can also be generalized to Pacbio long read data.