1 - 13 of 13 results


Allows studying of spatial patterning of gene expression at the single-cell level. Seurat is an R package that enables quality control (QC), analysis, and exploration of single cell RNA-seq data. The software includes three computational methods: (1) unsupervised clustering and discovery of cell types and states, (2) spatial reconstruction of single cell data, and (3) integrated analysis of single cell RNA-seq across conditions, technologies, and species. It can also localize rare subpopulations, and map both spatially restricted and scattered groups.

SPADE / Spanning tree Progression of Density normalized Events

Facilitates the analysis of cellular heterogeneity, the identification of cell types, and comparison of functional markers in response to perturbations, based on a versatile method. SPADE helps to organize high-dimensional cytometry data in an unsupervised manner, and to investigate natural and pathogenic cellular heterogeneity for biological insight. The SPADE algorithm consists of four components: (i) density-dependent downsampling, (ii) clustering, (iii) linking clusters with a minimum spanning tree, and (iv) upsampling to restore all cells in the final result. This modularized process allows more efficient sub-algorithms to replace the current components. In this sense, SPADE can be viewed as a framework for cytometric data analysis and visualization that has the capacity to be evolved and adapted.


An easy-to-use application for microarray, RNA-Seq and metabolomics analysis. For splicing sensitive platforms (RNA-Seq or Affymetrix Exon, Gene and Junction arrays), AltAnalyze will assess alternative exon (known and novel) expression along protein isoforms, domain composition and microRNA targeting. In addition to splicing-sensitive platforms, AltAnalyze provides comprehensive methods for the analysis of other data (RMA summarization, batch-effect removal, QC, statistics, annotation, clustering, network creation, lineage characterization, alternative exon visualization, gene-set enrichment and more).


Allows to reconstruct the differentiation trajectory from the pluripotent state through mesendoderm to definitive endoderm (DE). WaveCrest permits to reorder single cells according to the expression of key gene markers. It can identify candidate genes that could function as pioneer regulators governing the transition from mesendoderm to the DE state. It takes a group of genes of interest and aims to recover a smooth expression profile along time for each of the genes in consideration in implementing a constrained extended nearest-insertion (ENI) algorithm to reorder cells.

TSCAN / Tools for Single Cell ANalysis

A software tool developed to better support in silico pseudo-time reconstruction in single-cell RNA-seq analysis. TSCAN uses a cluster-based minimum spanning tree (MST) approach to order cells. Cells are first grouped into clusters and an MST is then constructed to connect cluster centers. Pseudo-time is obtained by projecting each cell onto the tree, and the ordered sequence of cells can be used to study dynamic changes of gene expression along the pseudo-time. Clustering cells before MST construction reduces the complexity of the tree space. This often leads to improved cell ordering. It also allows users to conveniently adjust the ordering based on prior knowledge. TSCAN has a graphical user interface (GUI) to support data visualization and user interaction. Furthermore, quantitative measures are developed to objectively evaluate and compare different pseudo-time reconstruction methods.

SINCERA / SINgle CEll RNA-seq profiling Analysis

A generally applicable analytic pipeline for processing single-cell RNA-seq data from a whole organ or sorted cells. SINCERA provides a panel of analytic tools for users to conduct data filtering, normalization, clustering, cell type identification, and gene signature prediction, transcriptional regulatory network construction and important regulatory node identification. The pipeline enables RNA-seq analysis from heterogeneous single cell preparations after the nucleotide sequence reads are aligned to the genome of interest.


Allows to analyze single-cell gene expression experiments. Monocle can realize differential expression analysis, clustering, visualization, and other useful tasks on single cell expression data. The software orders individual cells according to progress through a biological process, without knowing ahead of time which genes define progress through that process. It is designed to work with RNA-Seq and qPCR data, but could be used with other types as well. The tools Census and BEAM are implemented in Monocle.