Unlock your biological data


Try: RNA sequencing CRISPR Genomic databases DESeq

1 - 45 of 45 results
filter_list Filters
healing Disease
settings_input_component Operating System
tv Interface
computer Computer Skill
copyright License
1 - 45 of 45 results
A total solution to deal with not only data dependent MS/MS but also data independent MS/MS experiments for metabolomics and lipidomics. Its feature is 1) implementing de-convolution method for data independent MS/MS 2) using unified criteria for peak identification 3) supporting all data processing step from raw data import to statistical analysis 4) user-friendly graphic user interface. MS-DIAL deals with data independent acquisition MS/MS data (ex. SWATH) by means of two step algorithms (peak spotting and MS2Dec) for spectral deconvolution. Also, it supports compound identification, peak alignment, and principal component analysis on the graphical user interface. The spectrum information is outputted by MassBank, NIST, and Mascot formats. And the organized data matrix (sample vs metabolite) is exported as tab delimited text file.
An LC/MS-based data analysis approach which incorporates novel nonlinear retention time alignment, feature detection, and feature matching. The XCMS software reads and processes LC/MS data stored in netcdf , mzXML, mzData and mzML files. It provides methods for feature detection, non-linear retention time alignment, visualization, relative quantization and statistics. XCMS is capable of simultaneously preprocessing, analyzing, and visualizing the raw data from hundreds of samples. XCMS is freely available under an open-source license.
ADAP-GC / Automated Data Analysis Pipeline
Extracts metabolite information from raw. ADAP-GC is an automated computational pipeline for untargeted, gas chromatography mass spectrometry (GC/MS)-based metabolomics studies. This workflow is designed to preprocess raw, untargeted, GC/MS metabolomics data. It carries out a sequence of computational tasks that includes construction of extracted ion chromatograms (EICs), detection of peaks from EICs, spectral deconvolution, and alignment of analytes across samples.
AMDIS / Automated Mass spectral Deconvolution and Identification System
Provides an application for daily routine and emergency toxicology. AMDIS is a software developed to identify of even low-abundant peaks in the total ion chromatograms (TIC) and the reduction of the evaluation time by half. This method first deconvolutes pure component spectra and related information such as peak shape and retention time from complex chromatograms and subsequently matches the obtained spectra with those of a reference library.
MAIT / Metabolite Automatic Identification Toolkit
An R package of a set of tools and functions to perform an automatic end-to-end analysis of LC/MS metabolomic data, putting special emphasis on peak annotation and metabolite identification. The goal of the MAIT package is to provide an array of tools that makes programmable metabolomic end-to-end statistical analysis possible. MAIT includes functions to improve peak annotation through the process called biotransformations and to assess the predictive power of statistically significant metabolites that quantify class separability.
Uses singular value decomposition to capture and remove biases from liquid chromatography-mass spectrometry (LC-MS) peak intensity measurements. EigenMS is an adaptation of the surrogate variable analysis (SVA) algorithm. It is demonstrated using both large-scale calibration measurements and simulations to perform well relative to existing alternatives. The approach can be applied to a wide variety of problems in MSbased proteomics, such as the normalization of mass measurements or elution times.
A next-generation web application addressing storage, sharing, standardization, integration and analysis of metabolomics experiments. New features improve both efficiency and effectivity of the entire processing pipeline of chromatographic raw data from pre-processing to the derivation of new biological knowledge. First, the generation of high-quality metabolic datasets has been vastly simplified. Second, the new statistics tool box allows to investigate these datasets according to a wide spectrum of scientific and explorative questions.
Represents a complete collection of functions in the R programming language as an accessible GUI for biomarker discovery in large-scale liquid-chromatography high-resolution mass spectral datasets from acquisition through to final metabolite identification forming a backend to output from any peak-picking software such as XCMS. MetMSLine automatically creates subdirectories, data tables and relevant figures at the following steps: (i) signal smoothing, normalization, filtration and noise transformation (PreProc.QC.LSC.R); (ii) PCA and automatic outlier removal (Auto.PCA.R); (iii) automatic regression, biomarker selection, hierarchical clustering and cluster ion/artefact identification (Auto.MV.Regress.R); (iv) Biomarker-MS/MS fragmentation spectra matching and fragment/neutral loss annotation (Auto.MS.MS.match.R) and (v) semi-targeted metabolite identification based on a list of theoretical masses obtained from public databases (DBAnnotate.R).
SimExTargId / Simultaneous metabolomic MS1-profiling Experiment and statistically relevant MS2 Target Identification
Permits users to realize autonomous and real-time analysis of metabolomic data. SimExTargId is an open source R package that provides an autonomous workflow that can also calculate data preprocessing in real-time, thereby alerting the user to signal degradation or loss. This method also facilitates real-time monitoring of liquid chromatography-mass spectrometry (LC-MS) data acquisition.
Integrates algorithms to extract compound spectra, annotate isotope and adduct peaks, and propose the accurate compound mass even in highly complex data. CAMERA integrates multiple methods for grouping related features, and uses a dynamic rule table for the annotation of ion species. It is designed to post-process XCMS feature lists, and to collect all features related to a compound into a compound spectrum. For this, a set of algorithms has been implemented in CAMERA, such as the fast retention time-based grouping, but also a graph-based algorithm to integrate the peak shape analysis, isotopic information and intensity correlation across samples. The automatic sample selection avoids poor results if compounds have a low intensity (or are absent) in some samples. The ion species annotation uses a dynamic rule set, and a new strategy to combine spectral information from samples measured in positive and negative ion mode.
A software tool for the efficient and automatic analysis of GC/MS-based metabolomics data. Starting with raw MS data, MetaboliteDetector detects and subsequently identifies potential metabolites. Moreover, a comparative analysis of a large number of chromatograms can be performed in either a targeted or nontargeted approach. It automatically determines appropriate quantification ions and performs an integration of single ion peaks. The analysis results can directly be visualized with a principal component analysis. Since the manual input is limited to absolutely necessary parameters, the program is also usable for the analysis of high-throughput data. However, the intuitive graphical user interface of MetaboliteDetector additionally allows for a detailed examination of a single GC/MS chromatogram including single ion chromatograms, recorded mass spectra, and identified metabolite spectra in combination with the corresponding reference spectra obtained from a reference library. MetaboliteDetector is able to import GC/MS data in NetCDF and FastFlight format.
MET-IDEA / Metabolomics Ion-based Data Extraction Algorithm
A current and significant limitation to metabolomics is the large-scale, high-throughput conversion of raw chromatographically coupled mass spectrometry datasets into organized data matrices necessary for further statistical processing and data visualization. MET-IDEA is a data extraction tool which surmounts this void. It is compatible with a diversity of chromatographically coupled mass spectrometry systems, generates an output similar to traditional quantification methods, utilizes the sensitivity and selectivity associated with selected ion quantification, and greatly reduces the time and effort necessary to obtain large-scale organized datasets by several orders of magnitude.
An extension of the widely used mass spectrometry-based metabolomic software package XCMS. X(13)CMS uses the XCMS platform to detect metabolite peaks and perform retention-time alignment in liquid chromatography/mass spectrometry (LC/MS) data. With the use of the XCMS output, the program then identifies isotopologue groups that correspond to isotopically labeled compounds. The retrieval of these groups is done without any a priori knowledge besides the following input parameters: (i) the mass difference between the unlabeled and labeled isotopes, (ii) the mass accuracy of the instrument used in the analysis, and (iii) the estimated retention-time reproducibility of the chromatographic method. Despite its name, X(13)CMS can be used to track any isotopic label. Additionally, it detects differential labeling patterns in biological samples collected from parallel control and experimental conditions.
MET-COFEA / METabolite COmpound Feature Extraction and Annotation
A liquid chromatography/mass spectrometry (LC/MS) data processing and analysis platform. MET-COFEA detects and clusters chromatographic peak features for each metabolite compound by first comprehensively evaluating retention time and peak shape criteria and then annotating the associations between each peak's observed m/z value with the corresponding metabolite compound's molecular mass. MET-COFEA integrates a series of innovative approaches, including novel mass trace based extracted-ion chromatogram (EIC) extraction, continuous wavelet transform (CWT)-based peak detection, and compound-associated peak clustering and peak annotation algorithms.
MS-FLO / Mass Spectral Feature List Optimizer
Improves the quality of feature lists after initial processing. MS-FLO is a stand-alone web-based application that can be used for recognition and removal of erroneous features in liquid chromatography−tandem mass spectroscopy (LC-MS) datasets. The software is designed to examine datasets after initial processing and alert users to erroneous features, thus strengthening the statistical power of the dataset. It can be added to any untargeted LC-MS-based metabolomics workflow.
yamss / Yet Another Mass Spectrometry Software
Analyzes and visualizes high-throughput metabolomics data aquired using chromatography-mass spectrometry. yamss preprocess data in a way that enables reliable and powerful differential analysis. Currently, yamss implements a preprocessing method “bakedpi”, which stands for bivariate approximate kernel density estimation for peak identification. “bakedpi” is a preprocessing algorithm for untargeted metabolomics data. The output of “bakedpi” is essentially a table with dimension peaks (adducts) by samples, containing quantified intensity measurements representing the abundance of metabolites.
JUMPm / Jumbo Mass Spectrometry-based Proteomics metabolomics
Permits metabolite identification from both unlabeled and stable-isotope labeled datasets. JUMPm (i) detects metabolite features from spectra, and searches for formulas and structures in the database, for an unlabeled dataset, and (ii) determines the numbers of labeled atoms for unambiguously identifying formulas, for a stable-isotope labeled dataset that contains unlabeled and fully labeled metabolite pairs. It uses target-decoy strategy to estimate the false discovery rate (FDR).
An open source tool which is a flexible and accurate method for pre-processing very large numbers of GC-MS samples within hours. A novel strategy was developed to iteratively correct and update retention time indices for searching and identifying metabolites. TargetSearch includes a graphical user interface to allow easy use by those unfamiliar with R. It allows fast and accurate data pre-processing for GC-MS experiments and overcomes the sample number limitations and manual curation requirements of existing software.
A package of utilities for data extraction, quality control assessment, detection of overlapping and unique metabolites in multiple datasets, and batch annotation of metabolites. xMSanalyzer comprises of utilities that can be classified into five main modules: 1) merging apLCMS or XCMS sample processing results from multiple sets of parameter settings, 2) evaluation of sample quality, feature consistency, and batch-effect, 3) feature matching, and 4) characterization of m/z using KEGG REST; 5) Batch-effect correction using ComBat.
Assist users in processing, visualization and re-analysis of publicly-submitted raw and processed Gas Chromatography-Mass Spectrometry (GC-MS) metabolomics datasets. MetabolomeExpress performs three main functions: (i) store complete GC/MS metabolomics datasets in a way that makes them highly accessible, (ii) provide researchers with cost-free online access to a powerful raw data processing pipeline and (iii) store metabolite response statistics in a central database.
Comprises a library of functions for processing of instrument gas chromatography–mass spectrometry (GC-MS) data. PyMS currently provides a complete set of GC-MS processing functions, including reading of standard data formats (ANDI- MS/NetCDF and JCAMP-DX), noise smoothing, baseline correction, peak detection, peak deconvolution, peak integration, and peak alignment by dynamic programming. It implements parallel processing for by-row and by-column data processing tasks based on Message Passing Interface (MPI), allowing processing to scale on multiple CPUs in distributed computing environments.
An online tool for rapid processing and analysis of LCMS-based metabolomics data. Haystack runs in a browser environment with an intuitive graphical user interface that provides both display and data processing options. Total ion chromatograms (TICs) and base peak chromatograms (BPCs) are automatically displayed, along with time-resolved mass spectra and extracted ion chromatograms (EICs) over any mass range. Output files in the common .csv format can be saved for further statistical analysis or customized graphing. Haystack's core function is a flexible binning procedure that converts the mass dimension of the chromatogram into a set of interval variables that can uniquely identify a sample. Binned mass data can be analyzed by exploratory methods such as principal component analysis (PCA) to model class assignment and identify discriminatory features.
Aims to compare and evaluate various publicly available open source label-free data processing workflows. msCompare is a modular framework that allows the arbitrary combination of different feature detection/quantification and alignment/matching algorithms in conjunction with a scoring method to evaluate their overall performance. msCompare was used to assess the performance of workflows built from modules of publicly available data processing packages such as SuperHirn, OpenMS, and MZmine and in-house developed modules. It was found that the quality of results varied greatly among workflows, and interestingly, heterogeneous combinations of algorithms often performed better than the homogenous workflows. This scoring method showed that the union of feature matrices of different workflows outperformed the original homogenous workflows in some cases. msCompare is available as a standalone command line program or can be used through a Graphical User Interface (GUI) into the Galaxy framework.
Allows users to perform Two Dimensional Gas Chromatography-Mass Spectrometry (2D-GCMS) derived metabolite peak alignment and identification. R2DGC uses individual sample files including basic peak information to generate an alignment table which shows the peaks common to several samples and match the aligned one to a reference library. The pipeline also furnish a reference library gathering information about 298 peaks issued from over 125 metabolite standards and commonly observed background peaks.
Detects and identifies all peaks for comprehensive GCxGC/MS Data. GCxGC-Analyzer allows detection of minor differences between a sample and control based on either Full TIC processing or comparison of all individual fragment ions. The software provides several features such as import and graphical exploration, peak detection and differential analysis, and an also be used for Deconvolution and ID of a single sample. It can be useful for trouble shooting or product control applications.
Elements for Metabolomics
Assists users in analyzing metabolomics experiments using liquid chromatography coupled with mass spectrometry (LC-MS and LC-MS/MS). Elements for Metabolomics is a program that extracts features from the data, and performs a spectral library search to identify the extracted features. This tool allows users to organize, summarize and visualize the identified metabolites across a large number of biological samples. Moreover, it can support complex experiments by combining attributes (metadata) with Mass Spectrometry data.
MetDAT / Metabolite Data Analysis Tool
Allows analysis of mass spectrometry data. MetDAT permits users to combine experiment-centric workflows and data to optimize metabolite analysis. This tool is a web application providing interactive and customizable modules and user-driven analysis of data at hierarchical levels. It standardizes data analysis for researchers and realizes searches to simplify metabolite identification, and pathway mapping. It also contains a rich palette of visualization tools.
0 - 0 of 0 results
1 - 2 of 2 results
filter_list Filters
thumb_up Fields of Interest
public Country
1 - 2 of 2 results