Citation analyticsNew
Protocol design
Bioinformatics tools
Isolation and in vitro selection of actinomycetes strains as potential probiotics for aquaculture
This study was designed to describe a series of in vitro tests that may aid the discovery of probiotic strains from actinomycetes. Actinomycetes were isolated from marine sediments using four different isolation media, followed by antimicrobial activity and toxicity assessment by the agar diffusion method and the hemolysis of human blood cells, respectively. Extracellular enzymatic production was monitored by the hydrolysis of proteins, lipids and carbohydrates. Tolerance to different pH values and salt concentrations was also determined, followed by hydrophobicity analysis and genetic identification of the most promising strains. Five out of 31 isolated strains showed antimicrobial activity against three Vibrio species. Three non-hemolytic strains (N7, RL8 and V4) among these active isolates yielded positive results in hydrophobicity tests and exhibited good growth at salt concentrations ranging from 0% to 10%, except strain RL8, which required a salt concentration >0.6%. Although these strains did not grow at pH<3, they showed different enzymatic activities. Phylogenetic analysis revealed that strains N7 and V4 have more than 99% identity with several Streptomyces species, whereas the closest matches to strain RL8 are Streptomyces panacagri and Streptomyces flocculus, with 98% and 98.2% similarity, respectively. Three actinomycetes strains showing probiotic-like properties were discovered using several in vitro tests that can be easily implemented in different institutions around the world.
Polymorphisms in the 5′ upstream regulatory region of p21WAF1/CIP1 and susceptibility to oesophageal squamous cell carcinoma
This study aims to scan the 5′-upstream regulatory region of the p21 gene to identify all putative functional single nucleotide polymorphisms (SNPs) and to evaluate the contribution of p21 variants to oesophageal squamous cell carcinoma (ESCC) in the Chinese Han population. Common SNPs were identified, and both locus-based and haplotype-based association tests were used to evaluate the potential risk of these p21 gene polymorphisms for ESCC. Immunohistochemistry assay was further performed to detect the P21 protein expression in ESCC specimens. Twenty three SNPs were identified and seven Tagging SNPs were chosen to represent all 23 SNPs. Univariate analysis indicated that the rs3829963 C and the rs2395655 G alleles increased susceptibility to ESCC (OR = 1.606 and OR = 1.572, respectively). The rs3829963 C and rs2395655 G alleles, combined with cigarette smoking, could further increase the risk for ESCC (OR = 2.657 and OR = 2.828, respectively). Additionally, the rs2395655 G allele appeared to elevate the positive rate of P21 expression in ESCC tissues, as compared to the A allele. This report demonstrates for the first time that rs3829963 and rs2395655, in the promoter of the p21 gene are potentially functional, modulating susceptibility to ESCC among the high-risk cigarette-smoking Chinese population.
Genetic Evidence for O Specific Antigen as Receptor of Pseudomonas aeruginosa Phage K8 and Its Genomic Analysis
Phage therapy requires the comprehensive understanding of the mechanisms underlying the host-phage interactions. In this work, to identify the genes related to Pseudomonas aeruginosa phage K8 receptor synthesis, 16 phage-resistant mutants were selected from a Tn5G transposon mutant library of strain PAK. The disrupted genetic loci were identified and they were related to O-specific antigen (OSA) synthesis, including gene wbpR, ssg, wbpV, wbpO, and Y880_RS05480, which encoded a putative O-antigen polymerase Wzy. The Lipopolysaccharide profile of the Y880_RS05480 mutant was analyzed and shown to lack the O-antigen. Therefore, the data from characterization of Y880_RS05480 by TMHMM and SDS-PAGE silver staining analysis suggest that this locus might encode Wzy. The complete phage K8 genome was characterized as 93879 bp in length and contained identical 1188-bp terminal direct repeats. Comparative genomic analysis showed that phage K8 was highly homologous to members of the genus PaP1-like phages. On the basis of our genetic findings, OSA of P. aeruginosa PAK is proven to be the receptor of phage K8. The highly conserved structural proteins among the genetic closely related phages suggest that they may recognize the same receptor.
Candidate gene analysis supports a role for polymorphisms at TCF7L2 as risk factors for type 2 diabetes in Sudan
Genetic susceptibility to type 2 diabetes (T2D) is multifactorial. A growing number of genes have been identified as risk factors for T2D across multiple ethnicities in trans-ancestry meta-analysis of large-scale genome-wide association studies. Few studies have looked at these genes in Sub-Saharan African populations. This study was undertaken to look for associations between T2D and single nucleotide polymorphisms (SNPs) in a number of the top candidate genes in a selected Sudanese population. A total 240 T2D cases and 128 unrelated healthy control subjects were included in this study. Age, sex, weight and height were recorded, blood pressure and biochemical profiles of glucose and lipids were analysed. Single nucleotide polymorphism (SNP) genotyping was performed using the Sequenom MassARRAY® system. Fourteen SNPs were selected across 7 genes: CAPN10 (rs2975760 and rs5030952), PPARG (rs17036314 and rs1801282), IGF2BP2 (rs4402960 and rs1470579), CDKAL1 (rs9465871), HHEX (rs1111875), TCF7L2 (rs7903146, rs11196205 and rs12255372), and KCNJ11 (rs5215, rs1800467 and rs5219). Allelic and haplotype association analyses were performed under additive models in PLINK. P ≤ 0.007 (=0.05/7 genes) was the P-value required to achieve correction for multiple testing. A significant genetic association between the SNPs rs7903146 (odds ratio 1.69, 95 % confidence interval 1.21–2.38, P = 0.002) and rs12255372 (odds ratio 1.70, 95 % confidence interval 1.20–2.41, P = 0.003) at TCF7L2 and T2D was found in Sudanese population. These associations were retained after adjusting for age, sex and BMI (e.g. rs7903146: odds ratio 1.70, P adj:age/sex/BMI = 0.005). The strongest haplotype association (odds ratio 2.24; P adj:age/sex/BMI = 0.0003) comprised the two point haplotype T_C across rs7903146 and rs11196205. Stepwise logistic regression demonstrated that SNP rs7903146 added significant main effects to rs11196205 or rs12255372, whereas the reverse was not true, indicating that the main effect for association with T2D in this population is most strongly tagged by SNP rs7903146. Adjusted analyses also provided support for protection from T2D associated with minor alleles at SNPs rs2975760 at CAPN10 (odds ratio 0.44, 95 % confidence interval 0.20-0.97, P adj:age/sex/BMI = 0.042) and rs1111876 at HHEX (odds ratio 0.60, 95 % confidence interval 0.39- 0.93, P adj:age/sex/BMI = 0.022). Multiethnic associations between T2D and SNPs at TCF7L2, CAPN10 and HHEX extend to Sub-Saharan Africa, specifically Sudan.
Paenibacillus lentimorbus Inoculation Enhances Tobacco Growth and Extenuates the Virulence of Cucumber mosaic virus
Previous studies with Paenibacillus lentimorbus B-30488” (hereafter referred as B-30488), a plant growth promoting rhizobacteria (PGPR) isolated from cow’s milk, revealed its capabilities to improve plant quality under normal and stress conditions. Present study investigates its potential as a biocontrol agent against an economically important virus, Cucumber mosaic virus (CMV), in Nicotiana tabacum cv. White Burley plants and delineates the physical, biophysical, biochemical and molecular perturbations due to the trilateral interactions of PGPR-host-CMV. Soil inoculation of B-30488 enhanced the plant vigor while significantly decreased the virulence and virus RNA accumulation by ~12 fold (91%) in systemic leaves of CMV infected tobacco plants as compared to the control ones. Histology of these leaves revealed the improved tissue’s health and least aging signs in B-30488 inoculated tobacco plants, with or without CMV infection, and showed lesser intercellular spaces between collenchyma cells, reduced amount of xyloglucans and pectins in connecting primary cells, and higher polyphenol accumulation in hypodermis layer extending to collenchyma cells. B-30488 inoculation has favorably maneuvered the essential biophysical (ion leakage and photosynthetic efficiency) and biochemical (sugar, proline, chlorophyll, malondialdehyde, acid phosphatase and alkaline phosphatase) attributes of tobacco plants to positively regulate and release the virus stress. Moreover, activities of defense related enzymes (ascorbate peroxidase, guaiacol peroxidase, superoxide dismutase and catalase) induced due to CMV-infection were ameliorated with inoculation of B-30488, suggesting systemic induced resistance mediated protection against CMV in tobacco. The quantitative RT-PCR analyses of the genes related to normal plant development, stress and pathogenesis also corroborate well with the biochemical data and revealed the regulation (either up or down) of these genes in favor of plant to combat the CMV mediated stress. These improvements led tobacco plant to produce more flowers and seeds with no negative impact on plant health. The present study may advocate the applicability of B-30488 for crop yield improvement in virus infested areas.
Use of bacterial whole genome sequencing to investigate local persistence and spread in bovine tuberculosis
• We performed whole genome sequencing (WGS) of Mycobacterium bovis for a single molecular (VNTR) type. • Under-sampling of one lineage was caused by switching between VNTR-types. • Pairwise SNP distances showed a weak genetic isolation by distance pattern. • Bayesian phylogeographic inference was feasible despite a low substitution rate. • WGS studies of M. bovis need to account for slow evolution and molecular type switching. We performed whole genome sequencing (WGS) of Mycobacterium bovis for a single molecular (VNTR) type. Under-sampling of one lineage was caused by switching between VNTR-types. Pairwise SNP distances showed a weak genetic isolation by distance pattern. Bayesian phylogeographic inference was feasible despite a low substitution rate. WGS studies of M. bovis need to account for slow evolution and molecular type switching. Mycobacterium bovis is the causal agent of bovine tuberculosis, one of the most important diseases currently facing the UK cattle industry. Here, we use high-density whole genome sequencing (WGS) in a defined sub-population of M. bovis in 145 cattle across 66 herd breakdowns to gain insights into local spread and persistence. We show that despite low divergence among isolates, WGS can in principle expose contributions of under-sampled host populations to M. bovis transmission. However, we demonstrate that in our data such a signal is due to molecular type switching, which had been previously undocumented for M. bovis. Isolates from farms with a known history of direct cattle movement between them did not show a statistical signal of higher genetic similarity. Despite an overall signal of genetic isolation by distance, genetic distances also showed no apparent relationship with spatial distance among affected farms over distances <5 km. Using simulations, we find that even over the brief evolutionary timescale covered by our data, Bayesian phylogeographic approaches are feasible. Applying such approaches showed that M. bovis dispersal in this system is heterogeneous but slow overall, averaging 2 km/year. These results confirm that widespread application of WGS to M. bovis will bring novel and important insights into the dynamics of M. bovis spread and persistence, but that the current questions most pertinent to control will be best addressed using approaches that more directly integrate WGS with additional epidemiological data.
The use of noncrystallographic symmetry averaging to solve structures from data affected by perfect hemihedral twinning
Molecular replacement and noncrystallographic symmetry averaging were used to detwin a data set affected by perfect hemihedral twinning. The noncrystallographic symmetry averaging of the electron-density map corrected errors in the detwinning introduced by the differences between the molecular-replacement model and the crystallized structure. Hemihedral twinning is a crystal-growth anomaly in which a specimen is composed of two crystal domains that coincide with each other in three dimensions. However, the orientations of the crystal lattices in the two domains differ in a specific way. In diffraction data collected from hemihedrally twinned crystals, each observed intensity contains contributions from both of the domains. With perfect hemihedral twinning, the two domains have the same volumes and the observed intensities do not contain sufficient information to detwin the data. Here, the use of molecular replacement and of noncrystallographic symmetry (NCS) averaging to detwin a 2.1 Å resolution data set for Aichi virus 1 affected by perfect hemihedral twinning is described. The NCS averaging enabled the correction of errors in the detwinning introduced by the differences between the molecular-replacement model and the crystallized structure. The procedure permitted the structure to be determined from a molecular-replacement model that had 16% sequence identity and a 1.6 Å r.m.s.d. for Cα atoms in comparison to the crystallized structure. The same approach could be used to solve other data sets affected by perfect hemihedral twinning from crystals with NCS.
Rare Helicobacter pylori Virulence Genotypes in Bhutan
Both the prevalence of Helicobacter pylori infection and the incidence of gastric cancer are high in Bhutan. The high incidence of atrophic gastritis and gastric cancer suggest the phylogeographic origin of an infection with a more virulent strain of H. pylori. More than 90% of Bhutanese strains possessed the highly virulent East Asian-type CagA and all strains had the most virulent type of vacA (s1 type). More than half also had multiple repeats in East Asian-type CagA, which are rare in other countries and are reported characteristictly found in assciation with atrophic gastritis and gastric cancer consistent with Bhutanese strains having multiple H. pylori virulence factors associated with an increase in gastric cancer risk. Phylogeographic analyses showed that most Bhutanese strains belonged to the East Asian population type with some strains (17.5%) sharing East Asian and Amerindian components. Only 9.5% belonged to the European type consistant with H. pylori in Bhutan representing an intermediate evolutionary stage between H. pylori from European and East Asian countries.
Hypocellularity in the Murine Model for Down Syndrome Ts65Dn Is Not Affected by Adult Neurogenesis
Down syndrome (DS) is caused by the presence of an extra copy of the chromosome 21 and it is the most common aneuploidy producing intellectual disability. Neural mechanisms underlying this alteration may include defects in the formation of neuronal networks, information processing and brain plasticity. The murine model for DS, Ts65Dn, presents reduced adult neurogenesis. This reduction has been suggested to underlie the hypocellularity of the hippocampus as well as the deficit in olfactory learning in the Ts65Dn mice. Similar alterations have also been observed in individuals with DS. To determine whether the impairment in adult neurogenesis is, in fact, responsible for the hypocellularity in the hippocampus and physiology of the olfactory bulb, we have analyzed cell proliferation and neuronal maturation in the two major adult neurogenic niches in the Ts656Dn mice: the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ). Additionally, we carried out a study to determine the survival rate and phenotypic fate of newly generated cells in both regions, injecting 5′BrdU and sacrificing the mice 21 days later, and analyzing the number and phenotype of the remaining 5′BrdU-positive cells. We observed a reduction in the number of proliferating (Ki67 positive) cells and immature (doublecortin positive) neurons in the subgranular and SVZ of Ts65Dn mice, but we did not observe changes in the number of surviving cells or in their phenotype. These data correlated with a lower number of apoptotic cells (cleaved caspase 3 positive) in Ts65Dn. We conclude that although adult Ts65Dn mice have a lower number of proliferating cells, it is compensated by a lower level of cell death. This higher survival rate in Ts65Dn produces a final number of mature cells similar to controls. Therefore, the reduction of adult neurogenesis cannot be held responsible for the neuronal hypocellularity in the hippocampus or for the olfactory learning deficit of Ts65Dn mice.
Novel taxa in the Fusarium fujikuroi species complex from Pinus spp.
The pitch canker pathogen Fusarium circinatum has caused devastation to Pinus spp. in natural forests and non-natives in commercially managed plantations. This has drawn attention to the potential importance of Fusarium species as pathogens of forest trees. In this study, we explored the diversity of Fusarium species associated with diseased Pinus patula, P. tecunumanii, P. kesiya and P. maximinoi in Colombian plantations and nurseries. Plants displaying symptoms associated with a F. circinatum-like infection (i.e., stem cankers and branch die-back on trees in plantations and root or collar rot of seedlings) were sampled. A total of 57 isolates were collected and characterised based on DNA sequence data for the translation elongation factor 1-α and β-tubulin gene regions. Phylogenetic analyses of these data allowed for the identification of more than 10 Fusarium species. These included F. circinatum, F. oxysporum, species within the Fusarium solani species complex and seven novel species in the Fusarium fujikuroi species complex (formerly the Gibberella fujikuroi species complex), five of which are described here as new. Selected isolates of the new species were tested for their pathogenicity on Pinus patula and compared with that of F. circinatum. Of these, F. marasasianum, F. parvisorum and F. sororula displayed levels of pathogenicity to P. patula that were comparable with that of F. circinatum. These apparently emerging pathogens thus pose a significant risk to forestry in Colombia and other parts of the world.
Generic concepts in Nectriaceae
The ascomycete family Nectriaceae (Hypocreales) includes numerous important plant and human pathogens, as well as several species used extensively in industrial and commercial applications as biodegraders and biocontrol agents. Members of the family are unified by phenotypic characters such as uniloculate ascomata that are yellow, orange-red to purple, and with phialidic asexual morphs. The generic concepts in Nectriaceae are poorly defined, since DNA sequence data have not been available for many of these genera. To address this issue we performed a multi-gene phylogenetic analysis using partial sequences for the 28S large subunit (LSU) nrDNA, the internal transcribed spacer region and intervening 5.8S nrRNA gene (ITS), the large subunit of the ATP citrate lyase (acl1), the RNA polymerase II largest subunit (rpb1), RNA polymerase II second largest subunit (rpb2), α-actin (act), β-tubulin (tub2), calmodulin (cmdA), histone H3 (his3), and translation elongation factor 1-alpha (tef1) gene regions for available type and authentic strains representing known genera in Nectriaceae, including several genera for which no sequence data were previously available. Supported by morphological observations, the data resolved 47 genera in the Nectriaceae. We re-evaluated the status of several genera, which resulted in the introduction of six new genera to accommodate species that were initially classified based solely on morphological characters. Several generic names are proposed for synonymy based on the abolishment of dual nomenclature. Additionally, a new family is introduced for two genera that were previously accommodated in the Nectriaceae.
Draft Genome Sequences of Exfoliative Toxin A Producing Staphylococcus aureus Strains B 7772 and B 7777 (CC8/ST2993) and B 7774 (CC15/ST2126), Isolated in a Maternity Hospital in the Central Federal District of Russia
Staphylococcus aureus clonal complex 8 (CC8) has not been associated with staphylococcal scalded-skin syndrome (SSSS) in newborns and exfoliative toxin genes. Here, we report the draft genome sequences of exfoliative toxin A-producing B-7772, B-7777 (both CC8), and B-7774 (CC15) strains associated with SSSS in newborns.
Chronic P‐glycoprotein inhibition increases the brain concentration of escitalopram: potential implications for treating depression
Recent preclinical studies have revealed a functionally important role for the drug efflux pump P‐glycoprotein (P‐gp) at the blood–brain barrier in limiting brain levels and thus antidepressant‐like activity of certain antidepressant drugs. Specifically, acute administration of P‐gp inhibitors, such as verapamil and cyclosporin A (CsA), has been shown to augment brain concentrations and functional activity of the antidepressant escitalopram in rodents. However, depression is a chronic disorder and current treatments require prolonged administration to elicit their full therapeutic effect. Thus, it is important to investigate whether acute findings in relation to P‐gp inhibition translate to chronic paradigms. To this end, the present study investigates whether chronic treatment with the P‐gp inhibitor verapamil and the antidepressant escitalopram results in enhanced brain distribution and antidepressant‐like effects of escitalopram. Verapamil (10 mg·kg−1 i.p.) and escitalopram (0.1 mg·kg−1 i.p.) were administered once daily for 22 days. On the final day of treatment, brain regions and plasma were collected for analysis of cortical and plasma escitalopram concentrations, and to determine the hippocampal expression of genes previously reported to be altered by chronic antidepressant treatment. Verapamil treatment resulted in a greater than twofold increase in brain levels of escitalopram, without altering plasma levels. Neither gene expression analysis nor behavioral testing revealed an augmentation of responses to escitalopram treatment due to verapamil administration. Taken together, these data demonstrate for the first time that P‐gp inhibition can yield elevated brain concentrations of an antidepressant after chronic treatment. The functional relevance of these increased brain levels requires further elaboration.
Draft Genome Sequence of a Chlorinated Ethene Degrader, Cupriavidus necator Strain PHE3 6 (NBRC 110655)
Cupriavidus necator strain PHE3-6 grows on phenol as a sole carbon source and cometabolizes cis- and trans-dichloroethenes and trichloroethene. Here, we report the draft genome sequence of PHE3-6, which provides insights into the degradation system of phenol and chlorinated ethenes.
Draft Genome Sequences of Two Extensively Drug Resistant Strains of Mycobacterium tuberculosis Belonging to the Euro American S Lineage
We report the whole-genome sequencing of two extensively drug-resistant tuberculosis strains belonging to the Euro-American S lineage. The RSA 114 strain showed single-nucleotide polymorphisms predicted to have drug efflux activity.
Phylogeny of tremellomycetous yeasts and related dimorphic and filamentous basidiomycetes reconstructed from multiple gene sequence analyses
The Tremellomycetes (Basidiomycota) contains a large number of unicellular and dimorphic fungi with stable free-living unicellular states in their life cycles. These fungi have been conventionally classified as basidiomycetous yeasts based on physiological and biochemical characteristics. Many currently recognised genera of these yeasts are mainly defined based on phenotypical characters and are highly polyphyletic. Here we reconstructed the phylogeny of the majority of described anamorphic and teleomorphic tremellomycetous yeasts using Bayesian inference, maximum likelihood, and neighbour-joining analyses based on the sequences of seven genes, including three rRNA genes, namely the small subunit of the ribosomal DNA (rDNA), D1/D2 domains of the large subunit rDNA, and the internal transcribed spacer regions (ITS 1 and 2) of rDNA including 5.8S rDNA; and four protein-coding genes, namely the two subunits of the RNA polymerase II (RPB1 and RPB2), the translation elongation factor 1-α (TEF1) and the mitochondrial gene cytochrome b (CYTB). With the consideration of morphological, physiological and chemotaxonomic characters and the congruence of phylogenies inferred from analyses using different algorithms based on different data sets consisting of the combined seven genes, the three rRNA genes, and the individual protein-coding genes, five major lineages corresponding to the orders Cystofilobasidiales, Filobasidiales, Holtermanniales, Tremellales, and Trichosporonales were resolved. A total of 45 strongly supported monophyletic clades with multiple species and 23 single species clades were recognised. This phylogenetic framework will be the basis for the proposal of an updated taxonomic system of tremellomycetous yeasts that will be compatible with the current taxonomic system of filamentous basidiomycetes accommodating the ‘one fungus, one name’ principle.
Short Term and Long Term Biological Effects of Chronic Chemical Contamination on Natural Populations of a Marine Bivalve
Understanding the effects of chronic chemical contamination on natural populations of marine organisms is complex due to the combined effects of different types of pollutants and environmental parameters that can modulate the physiological responses to stress. Here, we present the effects of a chronic contamination in a marine bivalve by combining multiple approaches that provide information on individual and population health. We sampled variegated scallops (Mimachlamys varia) at sites characterized by different contaminants and contamination levels to study the short and long-term (intergenerational) responses of this species to physiological stress. We used biomarkers (SOD, MDA, GST, laccase, citrate synthase and phosphatases) as indicators of oxidative stress, immune system alteration, mitochondrial respiration and general metabolism, and measured population genetic diversity at each site. In parallel, concentration of 14 trace metals and 45 organic contaminants (PAHs, PCBs, pesticides) in tissues were measured. Scallops were collected outside and during their reproductive season to investigate temporal variability in contaminant and biomarker levels. Our analyses revealed that the levels of two biomarkers (Laccase-type phenoloxidase and malondialdehyde) were significantly correlated with Cd concentration. Additionally, we observed significant seasonal differences for four of the five biomarkers, which is likely due to the scallop reproductive status at time of sampling. As a source of concern, a location that was identified as a reference site on the basis of inorganic contaminant levels presented the same level of some persistent organic pollutants (DDT and its metabolites) than more impacted sites. Finally, potential long-term effects of heavy metal contamination were observed for variegated scallops as genetic diversity was depressed in the most polluted sites.
FOXP1 suppresses immune response signatures and MHC class II expression in activated B cell like diffuse large B cell lymphomas
The FOXP1 (forkhead box P1) transcription factor is a marker of poor prognosis in diffuse large B-cell lymphoma (DLBCL). Here microarray analysis of FOXP1-silenced DLBCL cell lines identified differential regulation of immune response signatures and major histocompatibility complex class II (MHC II) genes as some of the most significant differences between germinal center B-cell (GCB)-like DLBCL with full-length FOXP1 protein expression versus activated B-cell (ABC)-like DLBCL expressing predominantly short FOXP1 isoforms. In an independent primary DLBCL microarray data set, multiple MHC II genes, including human leukocyte antigen DR alpha chain (HLA-DRA), were inversely correlated with FOXP1 transcript expression (P<0.05). FOXP1 knockdown in ABC-DLBCL cells led to increased cell-surface expression of HLA-DRA and CD74. In R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone)-treated DLBCL patients (n=150), reduced HLA-DRA (<90% frequency) expression correlated with inferior overall survival (P=0.0003) and progression-free survival (P=0.0012) and with non-GCB subtype stratified by the Hans, Choi or Visco–Young algorithms (all P<0.01). In non-GCB DLBCL cases with <90% HLA-DRA, there was an inverse correlation with the frequency (P=0.0456) and intensity (P=0.0349) of FOXP1 expression. We propose that FOXP1 represents a novel regulator of genes targeted by the class II MHC transactivator CIITA (MHC II and CD74) and therapeutically targeting the FOXP1 pathway may improve antigen presentation and immune surveillance in high-risk DLBCL patients.
Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina
The subphylum Ustilaginomycotina (Basidiomycota, Fungi) comprises mainly plant pathogenic fungi (smuts). Some of the lineages possess cultivable unicellular stages that are usually classified as yeast or yeast-like species in a largely artificial taxonomic system which is independent from and largely incompatible with that of the smut fungi. Here we performed phylogenetic analyses based on seven genes including three nuclear ribosomal RNA genes and four protein coding genes to address the molecular phylogeny of the ustilaginomycetous yeast species and their filamentous counterparts. Taxonomic revisions were proposed to reflect this phylogeny and to implement the ‘One Fungus = One Name’ principle. The results confirmed that the yeast-containing classes Malasseziomycetes, Moniliellomycetes and Ustilaginomycetes are monophyletic, whereas Exobasidiomycetes in the current sense remains paraphyletic. Four new genera, namely Dirkmeia gen. nov., Kalmanozyma gen. nov., Golubevia gen. nov. and Robbauera gen. nov. are proposed to accommodate Pseudozyma and Tilletiopsis species that are distinct from the other smut taxa and belong to clades that are separate from those containing type species of the hitherto described genera. Accordingly, new orders Golubeviales ord. nov. with Golubeviaceae fam. nov. and Robbauerales ord. nov. with Robbaueraceae fam. nov. are proposed to accommodate the sisterhood of Golubevia gen. nov. and Robbauera gen. nov. with other orders of Exobasidiomycetes. The majority of the remaining anamorphic yeast species are transferred to corresponding teleomorphic genera based on strongly supported phylogenetic affinities, resulting in the proposal of 28 new combinations. The taxonomic status of a few Pseudozyma species remains to be determined because of their uncertain phylogenetic positions. We propose to use the term pro tempore or pro tem. in abbreviation to indicate the single-species lineages that are temporarily maintained.
Phylogenetic classification of yeasts and related taxa within Pucciniomycotina
Most small genera containing yeast species in the Pucciniomycotina (Basidiomycota, Fungi) are monophyletic, whereas larger genera including Bensingtonia, Rhodosporidium, Rhodotorula, Sporidiobolus and Sporobolomyces are polyphyletic. With the implementation of the “One Fungus = One Name” nomenclatural principle these polyphyletic genera were revised. Nine genera, namely Bannoa, Cystobasidiopsis, Colacogloea, Kondoa, Erythrobasidium, Rhodotorula, Sporobolomyces, Sakaguchia and Sterigmatomyces, were emended to include anamorphic and teleomorphic species based on the results obtained by a multi-gene phylogenetic analysis, phylogenetic network analyses, branch length-based methods, as well as morphological, physiological and biochemical comparisons. A new class Spiculogloeomycetes is proposed to accommodate the order Spiculogloeales. The new families Buckleyzymaceae with Buckleyzyma gen. nov., Chrysozymaceae with Chrysozyma gen. nov., Microsporomycetaceae with Microsporomyces gen. nov., Ruineniaceae with Ruinenia gen. nov., Symmetrosporaceae with Symmetrospora gen. nov., Colacogloeaceae and Sakaguchiaceae are proposed. The new genera Bannozyma, Buckleyzyma, Fellozyma, Hamamotoa, Hasegawazyma, Jianyunia, Rhodosporidiobolus, Oberwinklerozyma, Phenoliferia, Pseudobensingtonia, Pseudohyphozyma, Sampaiozyma, Slooffia, Spencerozyma, Trigonosporomyces, Udeniozyma, Vonarxula, Yamadamyces and Yunzhangia are proposed to accommodate species segregated from the genera Bensingtonia, Rhodosporidium, Rhodotorula, Sporidiobolus and Sporobolomyces. Ballistosporomyces is emended and reintroduced to include three Sporobolomyces species of the sasicola clade. A total of 111 new combinations are proposed in this study.
Towards an integrated phylogenetic classification of the Tremellomycetes
Families and genera assigned to Tremellomycetes have been mainly circumscribed by morphology and for the yeasts also by biochemical and physiological characteristics. This phenotype-based classification is largely in conflict with molecular phylogenetic analyses. Here a phylogenetic classification framework for the Tremellomycetes is proposed based on the results of phylogenetic analyses from a seven-genes dataset covering the majority of tremellomycetous yeasts and closely related filamentous taxa. Circumscriptions of the taxonomic units at the order, family and genus levels recognised were quantitatively assessed using the phylogenetic rank boundary optimisation (PRBO) and modified general mixed Yule coalescent (GMYC) tests. In addition, a comprehensive phylogenetic analysis on an expanded LSU rRNA (D1/D2 domains) gene sequence dataset covering as many as available teleomorphic and filamentous taxa within Tremellomycetes was performed to investigate the relationships between yeasts and filamentous taxa and to examine the stability of undersampled clades. Based on the results inferred from molecular data and morphological and physiochemical features, we propose an updated classification for the Tremellomycetes. We accept five orders, 17 families and 54 genera, including seven new families and 18 new genera. In addition, seven families and 17 genera are emended and one new species name and 185 new combinations are proposed. We propose to use the term pro tempore or pro tem. in abbreviation to indicate the species names that are temporarily maintained.
Phylogeny of yeasts and related filamentous fungi within Pucciniomycotina determined from multigene sequence analyses
In addition to rusts, the subphylum Pucciniomycotina (Basidiomycota) includes a large number of unicellular or dimorphic fungi which are usually studied as yeasts. Ribosomal DNA sequence analyses have shown that the current taxonomic system of the pucciniomycetous yeasts which is based on phenotypic criteria is not concordant with the molecular phylogeny and many genera are polyphyletic. Here we inferred the molecular phylogeny of 184 pucciniomycetous yeast species and related filamentous fungi using maximum likelihood, maximum parsimony and Bayesian inference analyses based on the sequences of seven genes, including the small subunit ribosomal DNA (rDNA), the large subunit rDNA D1/D2 domains, the internal transcribed spacer regions (ITS 1 and 2) of rDNA including the 5.8S rDNA gene; the nuclear protein-coding genes of the two subunits of DNA polymerase II (RPB1 and RPB2) and the translation elongation factor 1-α (TEF1); and the mitochondrial gene cytochrome b (CYTB). A total of 33 monophyletic clades and 18 single species lineages were recognised among the pucciniomycetous yeasts employed, which belonged to four major lineages corresponding to Agaricostilbomycetes, Cystobasidiomycetes, Microbotryomycetes and Mixiomycetes. These lineages remained independent from the classes Atractiellomycetes, Classiculomycetes, Pucciniomycetes and Tritirachiomycetes formed by filamentous taxa in Pucciniomycotina. An updated taxonomic system of pucciniomycetous yeasts implementing the ‘One fungus = One name’ principle will be proposed based on the phylogenetic framework presented here.
Accurate Transposable Element Annotation Is Vital When Analyzing New Genome Assemblies
Transposable elements (TEs) are mobile genetic elements with the ability to replicate themselves throughout the host genome. In some taxa TEs reach copy numbers in hundreds of thousands and can occupy more than half of the genome. The increasing number of reference genomes from nonmodel species has begun to outpace efforts to identify and annotate TE content and methods that are used vary significantly between projects. Here, we demonstrate variation that arises in TE annotations when less than optimal methods are used. We found that across a variety of taxa, the ability to accurately identify TEs based solely on homology decreased as the phylogenetic distance between the queried genome and a reference increased. Next we annotated repeats using homology alone, as is often the case in new genome analyses, and a combination of homology and de novo methods as well as an additional manual curation step. Reannotation using these methods identified a substantial number of new TE subfamilies in previously characterized genomes, recognized a higher proportion of the genome as repetitive, and decreased the average genetic distance within TE families, implying recent TE accumulation. Finally, these finding—increased recognition of younger TEs—were confirmed via an analysis of the postman butterfly (Heliconius melpomene). These observations imply that complete TE annotation relies on a combination of homology and de novo–based repeat identification, manual curation, and classification and that relying on simple, homology-based methods is insufficient to accurately describe the TE landscape of a newly sequenced genome.
A Protocol for the Comprehensive Flow Cytometric Analysis of Immune Cells in Normal and Inflamed Murine Non Lymphoid Tissues
Flow cytometry is used extensively to examine immune cells in non-lymphoid tissues. However, a method of flow cytometric analysis that is both comprehensive and widely applicable has not been described. We developed a protocol for the flow cytometric analysis of non-lymphoid tissues, including methods of tissue preparation, a 10-fluorochrome panel for cell staining, and a standardized gating strategy, that allows the simultaneous identification and quantification of all major immune cell types in a variety of normal and inflamed non-lymphoid tissues. We demonstrate that our basic protocol minimizes cell loss, reliably distinguishes macrophages from dendritic cells (DC), and identifies all major granulocytic and mononuclear phagocytic cell types. This protocol is able to accurately quantify 11 distinct immune cell types, including T cells, B cells, NK cells, neutrophils, eosinophils, inflammatory monocytes, resident monocytes, alveolar macrophages, resident/interstitial macrophages, CD11b- DC, and CD11b+ DC, in normal lung, heart, liver, kidney, intestine, skin, eyes, and mammary gland. We also characterized the expression patterns of several commonly used myeloid and macrophage markers. This basic protocol can be expanded to identify additional cell types such as mast cells, basophils, and plasmacytoid DC, or perform detailed phenotyping of specific cell types. In examining models of primary and metastatic mammary tumors, this protocol allowed the identification of several distinct tumor associated macrophage phenotypes, the appearance of which was highly specific to individual tumor cell lines. This protocol provides a valuable tool to examine immune cell repertoires and follow immune responses in a wide variety of tissues and experimental conditions.
When Parasites Are Good for Health: Cestode Parasitism Increases Resistance to Arsenic in Brine Shrimps
Parasites and pollutants can both affect any living organism, and their interactions can be very important. To date, repeated studies have found that parasites and heavy metals or metalloids both have important negative effects on the health of animals, often in a synergistic manner. Here, we show for the first time that parasites can increase host resistance to metalloid arsenic, focusing on a clonal population of brine shrimp from the contaminated Odiel and Tinto estuary in SW Spain. We studied the effect of cestodes on the response of Artemia to arsenic (acute toxicity tests, 24h LC50) and found that infection consistently reduced mortality across a range of arsenic concentrations. An increase from 25°C to 29°C, simulating the change in mean temperature expected under climate change, increased arsenic toxicity, but the benefits of infection persisted. Infected individuals showed higher levels of catalase and glutathione reductase activity, antioxidant enzymes with a very important role in the protection against oxidative stress. Levels of TBARS were unaffected by parasites, suggesting that infection is not associated with oxidative damage. Moreover, infected Artemia had a higher number of carotenoid-rich lipid droplets which may also protect the host through the “survival of the fattest” principle and the antioxidant potential of carotenoids. This study illustrates the need to consider the multi-stress context (contaminants and temperature increase) in which host-parasite interactions occur. Virtually all free-living organisms are infected by parasites. Moreover, both parasites and hosts may be exposed to increasing levels of pollution and might be affected by climate change. However, few studies have considered the environmental context in which parasites and hosts interact, and the relationships between these factors remains poorly understood. It is assumed that infection with parasites increases mortality under a cause of stress such as pollution. We studied the combined effect of arsenic (As) pollution, temperature increase and infection by tapeworms on the health of the economically and ecologically important brine shrimp Artemia. We found that tapeworms make Artemia more resistant to As, a major pollutant in aquatic environments, even under increased temperature conditions. These parasites increase the capacity of antioxidant enzymatic defenses, allowing infected individuals to cope better with As. Moreover, tapeworms increase fat reserves in their hosts, which may be advantageous due to the ability of lipids to sequester pollutants (“survival of the fattest” principle). Although our results may be unusual, we find a clear explanation for them. This makes them of broad significance and general interest.
On Predicting lung cancer subtypes using ‘omic’ data from tumor and tumor adjacent histologically normal tissue
Adenocarcinoma (ADC) and squamous cell carcinoma (SCC) are the most prevalent histological types among lung cancers. Distinguishing between these subtypes is critically important because they have different implications for prognosis and treatment. Normally, histopathological analyses are used to distinguish between the two, where the tissue samples are collected based on small endoscopic samples or needle aspirations. However, the lack of cell architecture in these small tissue samples hampers the process of distinguishing between the two subtypes. Molecular profiling can also be used to discriminate between the two lung cancer subtypes, on condition that the biopsy is composed of at least 50 % of tumor cells. However, for some cases, the tissue composition of a biopsy might be a mix of tumor and tumor-adjacent histologically normal tissue (TAHN). When this happens, a new biopsy is required, with associated cost, risks and discomfort to the patient. To avoid this problem, we hypothesize that a computational method can distinguish between lung cancer subtypes given tumor and TAHN tissue. Using publicly available datasets for gene expression and DNA methylation, we applied four classification tasks, depending on the possible combinations of tumor and TAHN tissue. First, we used a feature selector (ReliefF/Limma) to select relevant variables, which were then used to build a simple naïve Bayes classification model. Then, we evaluated the classification performance of our models by measuring the area under the receiver operating characteristic curve (AUC). Finally, we analyzed the relevance of the selected genes using hierarchical clustering and IPA® software for gene functional analysis. All Bayesian models achieved high classification performance (AUC > 0.94), which were confirmed by hierarchical cluster analysis. From the genes selected, 25 (93 %) were found to be related to cancer (19 were associated with ADC or SCC), confirming the biological relevance of our method. The results from this study confirm that computational methods using tumor and TAHN tissue can serve as a prognostic tool for lung cancer subtype classification. Our study complements results from other studies where TAHN tissue has been used as prognostic tool for prostate cancer. The clinical implications of this finding could greatly benefit lung cancer patients. The online version of this article (doi:10.1186/s12885-016-2223-3) contains supplementary material, which is available to authorized users.
Assessment of the effects of phenanthrene and its nitrogen heterocyclic analogues on microbial activity in soil
Microbes are susceptible to contaminant effects, and high concentrations of chemical in soil can impact on microbial growth, density, viability and development. As a result of relative sensitivity of microbes to contaminants, toxicity data are important in determining critical loads or safe levels for contaminants in soil. Therefore the aim of this study was to assess the impact of phenanthrene and the 3-ring nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs) on soil microbial respiration. Soil samples were amended with phenanthrene and its 3-ring nitrogen-containing analogues and respiration rates (using substrate induced respiration), CO2 production inhibition and/or stress and total culturable microbial numbers were measured over a 90 days soil-contact time. The study showed that inhibition of phenanthrene amended soils occurred in the first 60 days, while the nitrogen-containing analogues impacted on respiration with increased concentration and contact time. Time dependent inhibitions were more than 25 % portraying N-PAHs toxic and inhibitory effects on microbial synthesis of the added carbon substrate. Further, statistical analysis of data revealed statistically significant differences in the respiration rates over time (p < 0.05). This suggests that soil microorganisms may be more sensitive to N-PAHs in soil than the homocyclic PAH analogues. This current study provides baseline toxicity data to the understanding of the environmental impact of N-PAHs, and assists science-based decision makers for improved management of N-PAH contaminated sites.
GSG1L suppresses AMPA receptor mediated synaptic transmission and uniquely modulates AMPA receptor kinetics in hippocampal neurons
Regulation of AMPA receptor (AMPAR)-mediated synaptic transmission is a key mechanism for synaptic plasticity. In the brain, AMPARs assemble with a number of auxiliary subunits, including TARPs, CNIHs and CKAMP44, which are important for AMPAR forward trafficking to synapses. Here we report that the membrane protein GSG1L negatively regulates AMPAR-mediated synaptic transmission. Overexpression of GSG1L strongly suppresses, and GSG1L knockout (KO) enhances, AMPAR-mediated synaptic transmission. GSG1L-dependent regulation of AMPAR synaptic transmission relies on the first extracellular loop domain and its carboxyl-terminus. GSG1L also speeds up AMPAR deactivation and desensitization in hippocampal CA1 neurons, in contrast to the effects of TARPs and CNIHs. Furthermore, GSG1L association with AMPARs inhibits CNIH2-induced slowing of the receptors in heterologous cells. Finally, GSG1L KO rats have deficits in LTP and show behavioural abnormalities in object recognition tests. These data demonstrate that GSG1L represents a new class of auxiliary subunit with distinct functional properties for AMPARs. The molecular mechanism controlling the trafficking and function of AMPARs at synapses are not fully understood. Here the authors show that GSG1L, a membrane protein, negatively regulates AMPAR-mediated synaptic transmission and represents a new class of AMPAR auxiliary subunit.
Defects in the NC2 repressor affect both canonical and non coding RNA polymerase II transcription initiation in yeast
The formation of the pre-initiation complex in eukaryotic genes is a key step in transcription initiation. The TATA-binding protein (TBP) is a universal component of all pre-initiation complexes for all kinds of RNA polymerase II (RNA pol II) genes, including those with a TATA or a TATA-like element, both those that encode proteins and those that transcribe non-coding RNAs. Mot1 and the negative cofactor 2 (NC2) complex are regulators of TBP, and it has been shown that depletion of these factors in yeast leads to defects in the control of transcription initiation that alter cryptic transcription levels in selected yeast loci. In order to cast light on the molecular functions of NC2, we performed genome-wide studies in conditional mutants in yeast NC2 essential subunits Ydr1 and Bur6. Our analyses show a generally increased level of cryptic transcription in all kinds of genes upon depletion of NC2 subunits, and that each kind of gene (canonical or ncRNAs, TATA or TATA-like) shows some differences in the cryptic transcription pattern for each NC2 mutant. We conclude that NC2 plays a general role in transcription initiation in RNA polymerase II genes that is related with its known TBP interchange function from free to promoter bound states. Therefore, loss of the NC2 function provokes increases in cryptic transcription throughout the yeast genome. Our results also suggest functional differences between NC2 subunits Ydr1 and Bur6.
Complete genome of Staphylococcus aureus Tager 104 provides evidence of its relation to modern systemic hospital acquired strains
Staphylococcus aureus (S. aureus) infections range in severity due to expression of certain virulence factors encoded on mobile genetic elements (MGE). As such, characterization of these MGE, as well as single nucleotide polymorphisms, is of high clinical and microbiological importance. To understand the evolution of these dangerous pathogens, it is paramount to define reference strains that may predate MGE acquisition. One such candidate is S. aureus Tager 104, a previously uncharacterized strain isolated from a patient with impetigo in 1947. We show here that S. aureus Tager 104 can survive in the bloodstream and infect naïve organs. We also demonstrate a procedure to construct and validate the assembly of S. aureus genomes, using Tager 104 as a proof-of-concept. In so doing, we bridged confounding gap regions that limited our initial attempts to close this 2.82 Mb genome, through integration of data from Illumina Nextera paired-end, PacBio RS, and Lucigen NxSeq mate-pair libraries. Furthermore, we provide independent confirmation of our segmental arrangement of the Tager 104 genome by the sole use of Lucigen NxSeq libraries filled by paired-end MiSeq reads and alignment with SPAdes software. Genomic analysis of Tager 104 revealed limited MGE, and a νSaβ island configuration that is reminiscent of other hospital acquired S. aureus genomes. Tager 104 represents an early-branching ancestor of certain hospital-acquired strains. Combined with its earlier isolation date and limited content of MGE, Tager 104 can serve as a viable reference for future comparative genome studies. The online version of this article (doi:10.1186/s12864-016-2433-8) contains supplementary material, which is available to authorized users.
A new allele for aluminium tolerance gene in barley (Hordeum vulgare L.)
Aluminium (Al) toxicity is the main factor limiting the crop production in acid soils and barley (Hordeum vulgare L.) is one of the most Al-sensitive of the small-grained cereals. The major gene for Al tolerance in barley is HvAACT1 (HvMATE) on chromosome 4H which encodes a multidrug and toxic compound extrusion (MATE) protein. The HvAACT1 protein facilitates the Al-activated release of citrate from root apices which protects the growing cells and enables root elongation to continue. A 1 kb transposable element-like insert in the 5’ untranslated region (UTR) of HvAACT1 is associated with increased gene expression and tolerance and a PCR-based marker is available to score for this insertion. We screened a wide range of barley genotypes for Al tolerance and identified a moderately tolerant Chinese genotype named CXHKSL which did not show the typical allele in the 5’ UTR of HvAACT1 associated with tolerance. We investigated the mechanism of Al tolerance in CXHKSL and concluded it also relies on the Al-activated release of citrate from roots. Quantitative trait loci (QTL) analysis of double haploid lines generated with CXHKSL and the Al-sensitive variety Gairdner mapped the tolerance locus to the same region as HvAACT1 on chromosome 4H. Our results show that the Chinese barley genotype CXHKSL possesses a novel allele of the major Al tolerance gene HvAACT1. The online version of this article (doi:10.1186/s12864-016-2551-3) contains supplementary material, which is available to authorized users.
Genome Wide Analysis of the AP2/ERF Gene Family in Physic Nut and Overexpression of the JcERF011 Gene in Rice Increased Its Sensitivity to Salinity Stress
The AP2/ERF transcription factors play crucial roles in plant growth, development and responses to biotic and abiotic stresses. A total of 119 AP2/ERF genes (JcAP2/ERFs) have been identified in the physic nut genome; they include 16 AP2, 4 RAV, 1 Soloist, and 98 ERF genes. Phylogenetic analysis indicated that physic nut AP2 genes could be divided into 3 subgroups, while ERF genes could be classed into 11 groups or 43 subgroups. The AP2/ERF genes are non-randomly distributed across the 11 linkage groups of the physic nut genome and retain many duplicates which arose from ancient duplication events. The expression patterns of several JcAP2/ERF duplicates in the physic nut showed differences among four tissues (root, stem, leaf, and seed), and 38 JcAP2/ERF genes responded to at least one abiotic stressor (drought, salinity, phosphate starvation, and nitrogen starvation) in leaves and/or roots according to analysis of digital gene expression tag data. The expression of JcERF011 was downregulated by salinity stress in physic nut roots. Overexpression of the JcERF011 gene in rice plants increased its sensitivity to salinity stress. The increased expression levels of several salt tolerance-related genes were impaired in the JcERF011-overexpressing plants under salinity stress.
Healthy and diseased corticospinal motor neurons are selectively transduced upon direct AAV2 2 injection into the motor cortex
Direct gene delivery to the neurons of interest, without affecting other neuron populations in the cerebral cortex, represent a challenge owing to the heterogeneity and cellular complexity of the brain. Genetic modulation of corticospinal motor neurons (CSMN) is required for developing effective and long-term treatment strategies for motor neuron diseases, in which voluntary movement is impaired. Adeno-associated viruses (AAV) have been widely used for neuronal transduction studies owing to long-term and stable gene expression as well as low immunoreactivity in humans. Here we report that AAV2-2 transduces CSMN with high efficiency upon direct cortex injection and that transduction efficiencies are similar during presymptomatic and symptomatic stages in hSOD1G93A transgenic amyotrophic lateral sclerosis (ALS) mice. Our findings reveal that choice of promoter improves selectivity as AAV2-2 chicken β-actin promoter injection results in about 70% CSMN transduction, the highest percentage reported to date. CSMN transduction in both wild-type and transgenic ALS mice allows detailed analysis of single axon fibers within the corticospinal tract in both cervical and lumbar spinal cord and reveals circuitry defects, which mainly occur between CSMN and spinal motor neurons in hSOD1G93A transgenic ALS mice. Our findings set the stage for CSMN gene therapy in ALS and related motor neuron diseases.
A Heterologous Multiepitope DNA Prime/Recombinant Protein Boost Immunisation Strategy for the Development of an Antiserum against Micrurus corallinus (Coral Snake) Venom
Envenoming by coral snakes (Elapidae: Micrurus), although not abundant, represent a serious health threat in the Americas, especially because antivenoms are scarce. The development of adequate amounts of antielapidic serum for the treatment of accidents caused by snakes like Micrurus corallinus is a challenging task due to characteristics such as low venom yield, fossorial habit, relatively small sizes and ophiophagous diet. These features make it difficult to capture and keep these snakes in captivity for venom collection. Furthermore, there are reports of antivenom scarcity in USA, leading to an increase in morbidity and mortality, with patients needing to be intubated and ventilated while the toxin wears off. The development of an alternative method for the production of an antielapidic serum, with no need for snake collection and maintenance in captivity, would be a plausible solution for the antielapidic serum shortage. In this work we describe the mapping, by the SPOT-synthesis technique, of potential B-cell epitopes from five putative toxins from M. corallinus, which were used to design two multiepitope DNA strings for the genetic immunisation of female BALB/c mice. Results demonstrate that sera obtained from animals that were genetically immunised with these multiepitope constructs, followed by booster doses of recombinant proteins lead to a 60% survival in a lethal dose neutralisation assay. Here we describe that the genetic immunisation with a synthetic multiepitope gene followed by booster doses with recombinant protein is a promising approach to develop an alternative antielapidic serum against M. corallinus venom without the need of collection and the very challenging maintenance of these snakes in captivity. Coral snakes are a group of deadly venomous snakes that exhibit a characteristic red, yellow/white, and black coloured banding pattern. Accidents involving these snakes tend to be very severe or even lethal, causing peripheral nervous system depression with muscle paralysis and vasomotor instability. The only acceptable medical treatment for snakebite accidents is the administration of an antivenom, generally produced by immunising horses with the snake venom. Nonetheless, for what concerns the antielapidic serum production in Brazil, the total amount of venom available for horse immunisations is insufficient. This is mainly due to the small size of coral snake glands, their underground life style, combined with its very low survival rates in captivity. Moreover, cases of patients being intubated and ventilated as a consequence of antivenom shortage in USA have also been registered. In this work, we present an alternative method for the development of antielapidic serum, which does not rely upon snake capture. This serum was produced by a heterologous DNA prime—with a multiepitope DNA string coding for the most reactive epitopes from the most abundant toxins of M. corallinus, a coral snake which occupy highly populated areas in Brazil—followed by recombinant multiepitope protein boost immunisation of mice.
The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease
Interleukin-1 beta (IL-1β) and its key regulator, the inflammasome, are suspected to play a role in the neuroinflammation observed in Alzheimer’s disease (AD); no conclusive data are nevertheless available in AD patients. mRNA for inflammasome components (NLRP1, NLRP3, PYCARD, caspase 1, 5 and 8) and downstream effectors (IL-1β, IL-18) was up-regulated in severe and MILD AD. Monocytes co-expressing NLRP3 with caspase 1 or caspase 8 were significantly increased in severe AD alone, whereas those co-expressing NLRP1 and NLRP3 with PYCARD were augmented in both severe and MILD AD. Activation of the NLRP1 and NLRP3 inflammasomes in AD was confirmed by confocal microscopy proteins co-localization and by the significantly higher amounts of the pro-inflammatory cytokines IL-1β and IL-18 being produced by monocytes. In MCI, the expression of NLRP3, but not the one of PYCARD or caspase 1 was increased, indicating that functional inflammasomes are not assembled in these individuals: this was confirmed by lack of co-localization and of proinflammatory cytokines production. The activation of at least two different inflammasome complexes explains AD-associated neuroinflammation. Strategies targeting inflammasome activation could be useful in the therapy of AD.
Winter temperatures decrease swimming performance and limit distributions of tropical damselfishes
Planktivorous coral reef fishes occupy sheltered to exposed reef habitats based on their ability to swim and foraging within the current. However, climate driven fluctuations in temperature can reduce this ability to swim and direct the distribution of species to more sheltered habitats. Coral reefs within 10° of the equator generally experience ≤3°C seasonal variation in water temperature. Ectotherms that have evolved in these conditions are therefore expected to exhibit narrow thermal optima and be very sensitive to the greater thermal variability (>6°C) experienced at higher latitudes (≥10°N/S). The impact of increased thermal variability on the fitness and distribution of thermally sensitive reef ectotherms is currently unknown. Here, we examine site-attached planktivorous coral reef damselfishes that rely on their physiological capacity to swim and forage in the water column year round. We focus on 10 species spanning four evolutionarily distinct genera from a region of the Great Barrier Reef that experiences ≥6°C difference between seasons. Four ecologically important indicators showed reduced performance during the winter low (23°C) compared with the summer peak (29°C), with effect sizes varying among species and genera, as follows: (i) the energy available for activity (aerobic scope) was reduced by 35–45% in five species and three genera; (ii) the energetically most efficient swimming speed was reduced by 17% across all species; and (iii) the maximal critical swimming speed and (iv) the gait transition speed (the swimming mode predominantly used for foraging) were reduced by 16–42% in six species spanning all four genera. Comparisons with field surveys within and across latitudes showed that species-specific distributions were strongly correlated with these performance indicators. Species occupy habitats where they can swim faster than prevailing habitat currents year round, and >95% of individuals were observed only in habitats where the gait transition speed can be maintained at or above habitat currents. Thermal fluctuation at higher latitudes appears to reduce performance as well as the possible distribution of species and genera within and among coral reef habitats. Ultimately, thermal variability across latitudes may progressively cause sublethal changes to species performance and lead to a contraction of biogeographical range.
Mitogen activated protein kinase signaling causes malignant melanoma cells to differentially alter extracellular matrix biosynthesis to promote cell survival
Intrinsic and acquired resistance to drug therapies remains a challenge for malignant melanoma patients. Intratumoral heterogeneities within the tumor microenvironment contribute additional complexity to the determinants of drug efficacy and acquired resistance. We use 3D biomimetic platforms to understand dynamics in extracellular matrix (ECM) biogenesis following pharmaceutical intervention against mitogen-activated protein kinases (MAPK) signaling. We further determined temporal evolution of secreted ECM components by isogenic melanoma cell clones. We found that the cell clones differentially secrete and assemble a myriad of ECM molecules into dense fibrillar and globular networks. We show that cells can modulate their ECM biosynthesis in response to external insults. Fibronectin (FN) is one of the key architectural components, modulating the efficacy of a broad spectrum of drug therapies. Stable cell lines engineered to secrete minimal levels of FN showed a concomitant increase in secretion of Tenascin-C and became sensitive to BRAFV600E and ERK inhibition as clonally- derived 3D tumor aggregates. These cells failed to assemble exogenous FN despite maintaining the integrin machinery to facilitate cell- ECM cross-talk. We determined that only clones that increased FN production via p38 MAPK and β1 integrin survived drug treatment. These data suggest that tumor cells engineer drug resistance by altering their ECM biosynthesis. Therefore, drug treatment may induce ECM biosynthesis, contributing to de novo resistance. The online version of this article (doi:10.1186/s12885-016-2211-7) contains supplementary material, which is available to authorized users.
Enhanced Cutaneous Wound Healing In Vivo by Standardized Crude Extract of Poincianella pluviosa
Wound healing is a complex process that involves several biological events, and a delay in this process may cause economic and social problems for the patient. The search continues for new alternative treatments to aid healing, including the use of herbal medicines. Members of the genus Caesalpinia are used in traditional medicine to treat wounds. The related species Poincianella pluviosa (DC.) L.P. Queiroz increases the cell viability of keratinocytes and fibroblasts and stimulates the proliferation of keratinocytes in vitro. The crude extract (CE) from bark of P. pluviosa was evaluated in the wound-healing process in vivo, to validate the traditional use and the in vitro activity. Standardized CE was incorporated into a gel and applied on cutaneous wounds (TCEG) and compared with the formulation without CE (Control) for 4, 7, 10, or 14 days of treatment. The effects of the CE on wound re-epithelialization; cell proliferation; permeation, using photoacoustic spectroscopy (PAS); and proteins, including vascular endothelial growth factor (VEGF), superoxide dismutase 2 (SOD-2) and cyclooxygenase 2 (COX-2) were evaluated. The TCEG stimulated the migration of keratinocytes at day 4 and proliferation on the following days, with a high concentration of cells in metaphase at 7 days. Type I collagen formed more rapidly in the TCEG. PAS showed that the CE had permeated through the skin. TCEG stimulated VEGF at day 4 and SOD-2 and COX-2 at day 7. The results suggest that the CE promoted the regulation of proteins and helped to accelerate the processes involved in healing, promoting early angiogenesis. This led to an increase in the re-epithelialized surface, with significant mitotic activity. Maturation of collagen fibers was also enhanced, which may affect the resistance of the extracellular matrix. PAS indicated a correlation between the rate of diffusion and biological events during the healing process. The CE from P. pluviosa appears promising as an aid in healing.
Missed, Not Missing: Phylogenomic Evidence for the Existence of Avian FoxP3
The Forkhead box transcription factor FoxP3 is pivotal to the development and function of regulatory T cells (Tregs), which make a major contribution to peripheral tolerance. FoxP3 is believed to perform a regulatory role in all the vertebrate species in which it has been detected. The prevailing view is that FoxP3 is absent in birds and that avian Tregs rely on alternative developmental and suppressive pathways. Prompted by the automated annotation of foxp3 in the ground tit (Parus humilis) genome, we have questioned this assumption. Our analysis of all available avian genomes has revealed that the foxp3 locus is missing, incomplete or of poor quality in the relevant genomic assemblies for nearly all avian species. Nevertheless, in two species, the peregrine falcon (Falco peregrinus) and the saker falcon (F. cherrug), there is compelling evidence for the existence of exons showing synteny with foxp3 in the ground tit. A broader phylogenomic analysis has shown that FoxP3 sequences from these three species are similar to crocodilian sequences, the closest living relatives of birds. In both birds and crocodilians, we have also identified a highly proline-enriched region at the N terminus of FoxP3, a region previously identified only in mammals.
Comparative transcriptomics of the nematode gut identifies global shifts in feeding mode and pathogen susceptibility
The nematode Pristionchus pacificus has been established as a model for comparative studies using the well known Caenorhabditis elegans as a reference. Despite their relatedness, previous studies have revealed highly divergent development and a number of morphological differences including the lack of a pharyngal structure, the grinder, used to physically lyse the ingested bacteria in C. elegans. To complement current knowledge about developmental and ecological differences with a better understanding of their feeding modes, we have sequenced the intestinal transcriptomes of both nematodes. In total, we found 464 intestine-enriched genes in P. pacificus and 724 in C. elegans, of which the majority (66 %) has been identified by previous studies. Interestingly, only 15 genes could be identified with shared intestinal enrichment in both species, of which three genes are Hedgehog signaling molecules supporting a highly conserved role of this pathway for intestinal development across all metazoa. At the level of gene families, we find similar divergent trends with only five families displaying significant intestinal enrichment in both species. We compared our data with transcriptomic responses to various pathogens. Strikingly, C. elegans intestine-enriched genes showed highly significant overlaps with pathogen response genes whereas this was not the case for P. pacificus, indicating shifts in pathogen susceptibility that might be explained by altered feeding modes. Our study reveals first insights into the evolution of feeding systems and the associated changes in intestinal gene expression that might have facilitated nematodes of the P. pacificus lineage to colonize new environments. These findings deepen our understanding about how morphological and genomic diversity is created during the course of evolution. The online version of this article (doi:10.1186/s13104-016-1886-9) contains supplementary material, which is available to authorized users.
Mapping Quantitative Trait Loci Affecting Biochemical and Morphological Fruit Properties in Eggplant (Solanum melongena L.)
Eggplant berries are a source of health-promoting metabolites including antioxidant and nutraceutical compounds, mainly anthocyanins and chlorogenic acid; however, they also contain some anti-nutritional compounds such as steroidal glycoalkaloids (SGA) and saponins, which are responsible for the bitter taste of the flesh and with potential toxic effects on humans. Up to now, Quantitative Trait Loci (QTL) for the metabolic content are far from being characterized in eggplant, thus hampering the application of breeding programs aimed at improving its fruit quality. Here we report on the identification of some QTL for the fruit metabolic content in an F2 intraspecific mapping population of 156 individuals, obtained by crossing the eggplant breeding lines “305E40” × “67/3.” The same population was previously employed for the development of a RAD-tag based linkage map and the identification of QTL associated to morphological and physiological traits. The mapping population was biochemically characterized for both fruit basic qualitative data, like dry matter, °Brix, sugars, and organic acids, as well as for health-related compounds such chlorogenic acid, (the main flesh monomeric phenol), the two peel anthocyanins [i.e., delphinidin-3-rutinoside (D3R) and delphinidin-3-(p- coumaroylrutinoside)-5-glucoside (nasunin)] and the two main steroidal glycoalkaloids, solasonine, and solamargine. For most of the traits, one major QTL (PVE ≥10%) was spotted and putative orthologies with other Solanaceae crops are discussed. The present results supply valuable information to eggplant breeders on the inheritance of key fruit quality traits, thus providing potential tools to assist future breeding programs.
An iNTT system for the large scale screening of differentially expressed, nuclear targeted proteins: cold treatment induced nucleoproteins in Rye (Secale cereale L.)
Nuclear proteins play critical roles in regulating mRNA transcription and processing, DNA replication, and epigenetic genome modification. Therefore, the ability to monitor changes in nuclear proteins is helpful not only to identify important regulatory proteins but also to study the mechanisms of actions of nuclear proteins. However, no effective methods have been developed yet. Rye is strongly resistant to various biotic and abiotic stresses; however, few genes have been functionally characterized to date due to the complexity of its genome and a lack of genomic sequence information. We developed an integrative Nuclear Transportation Trap (iNTT) system that includes an improved nuclear transportation trap and utilizes the “after suppression subtraction” method. Oligonucleotides encoding a nuclear localization signal (NLS) or a transcription factor, GmAREB, were inserted into pLexAD or pLexAD-NES, respectively, and then transformed into yeast cells (EGY48). We showed that the pLexAD vector expressing a cDNA library in the iNTT system was more efficient for screening than the vector pLexAD-NES, which has previously been used in an NTT system. We used the iNTT system to screen a cDNA library of cold-treated rye. A total of 241 unique genes were identified, including 169 differentially expressed proteins; of these, 106 were of known and 63 were of unknown function. Moreover, 82 genes (49 %) among the 169 differentially expressed genes were predicted to contain an NLS domain. Thirty-three (31 %) of the 106 functionally known proteins have DNA-binding activity. To test the specificity of the nuclear proteins identified using the iNTT screen, four of the proteins differentially expressed in response to temperature stress, ScT1 (a heat shock protein), ScT36 (a MYB-like transcription factor), ScT133 (an ERF-like transcription factor) and ScT196 (a protein of unknown function), were studied in more depth. These proteins were shown to exclusively localize to the nucleus, and their expression levels were increased in response to low-temperature stress. To identify the function of these screened nuclear proteins, ScT1- and ScT36-transgenic Arabidopsis plants were constructed, and ScT1 or ScT36 overexpression was found to enhance tolerance to high-temperature or freezing stresses, respectively. The newly developed iNTT system provides an effective method for identifying nuclear-targeted proteins and monitoring induced expression levels. ScT1 and ScT36 might be good candidate genes for improving the stress tolerance of plants by genetic transformation. The online version of this article (doi:10.1186/s12864-016-2548-y) contains supplementary material, which is available to authorized users.
Analysis of telomerase target gene expression effects from murine models in patient cohorts by homology translation and random survival forest modeling
Acute myeloid leukemia (AML) is an aggressive and rapidly fatal blood cancer that affects patients of any age group. Despite an initial response to standard chemotherapy, most patients relapse and this relapse is mediated by leukemia stem cell (LSC) populations. We identified a functional requirement for telomerase in sustaining LSC populations in murine models of AML and validated this requirement using an inhibitor of telomerase in human AML. Here, we describe in detail the contents, quality control and methods of the gene expression analysis used in the published study (Gene Expression Omnibus GSE63242). Additionally, we provide annotated gene lists of telomerase regulated genes in AML and R code snippets to access and analyze the data used in the original manuscript.
Human Cerebrospinal Fluid Promotes Neuronal Viability and Activity of Hippocampal Neuronal Circuits In Vitro
For decades it has been hypothesized that molecules within the cerebrospinal fluid (CSF) diffuse into the brain parenchyma and influence the function of neurons. However, the functional consequences of CSF on neuronal circuits are largely unexplored and unknown. A major reason for this is the absence of appropriate neuronal in vitro model systems, and it is uncertain if neurons cultured in pure CSF survive and preserve electrophysiological functionality in vitro. In this article, we present an approach to address how human CSF (hCSF) influences neuronal circuits in vitro. We validate our approach by comparing the morphology, viability, and electrophysiological function of single neurons and at the network level in rat organotypic slice and primary neuronal cultures cultivated either in hCSF or in defined standard culture media. Our results demonstrate that rodent hippocampal slices and primary neurons cultured in hCSF maintain neuronal morphology and preserve synaptic transmission. Importantly, we show that hCSF increases neuronal viability and the number of electrophysiologically active neurons in comparison to the culture media. In summary, our data indicate that hCSF represents a physiological environment for neurons in vitro and a superior culture condition compared to the defined standard media. Moreover, this experimental approach paves the way to assess the functional consequences of CSF on neuronal circuits as well as suggesting a novel strategy for central nervous system (CNS) disease modeling.
HHV 8 unrelated primary effusion like lymphoma associated with clonal loss of inherited chromosomally integrated human herpesvirus 6A from the telomere of chromosome 19q
Primary effusion lymphomas (PEL) are associated with human herpesvirus-8 (HHV-8) and usually occur in immunocompromised individuals. However, there are numerous reports of HHV-8-unrelated PEL-like lymphomas with unknown aetiology. Here we characterize an HHV-8-unrelated PEL-like lymphoma in an elderly woman who was negative for human immunodeficiency viruses 1 and 2, and hepatitis B and C. The woman was, however, a carrier of an inherited-chromosomally-integrated human herpesvirus-6A (iciHHV-6A) genome in one 19q telomere. The iciHHV-6A genome was complete in blood DNA, encoding a full set of protein-coding genes. Interestingly, the entire iciHHV-6A genome was absent from the HHV-8-unrelated-PEL-like lymphoma cells despite retention of both copies of chromosome 19. The somatic loss of the 19q-iciHHV-6A genome occurred very early during lymphoma development and we propose it occurred via telomere-loop formation and excision to release a circular viral genome that was subsequently lost. Whether release of the HHV-6A genome from the telomere contributed to lymphomagenesis, or was coincidental, remains unclear but this event may have deregulated the expression of HHV-6A or 19q genes or else disrupted telomere function. To establish the frequency and importance of iciHHV-6 loss from telomeres, the HHV-6 copy number should be assessed in tumours that arise in iciHHV-6 carriers.
Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil
Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal, and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography–mass spectrometry (GC–MS), shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities to reach 3.2–3.4 times higher than in the untreated soil, whereas the addition of soybean meal resulted in an insignificant change in the produced CO2, given the high respiration activities of the soybean meal alone. GC–MS analysis revealed that the addition of sewage sludge and wheat straw resulted in 1.7–1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥90% of the C14 to C30 alkanes was measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5–86.4% of total sequences) of acquired sequences from the untreated soil belonged to Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. Multivariate analysis of operational taxonomic units placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R = 0.66, P = 0.0001). The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95–98% of the total sequences were affiliated to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils.
Prolyl hydroxylase domain 2 deficiency promotes skeletal muscle fiber type transition via a calcineurin/NFATc1 dependent pathway
Hypoxia exposure is known to induce an alteration in skeletal muscle fiber-type distribution mediated by hypoxia-inducible factor (HIF)-α. The downstream pathway of HIF-α leading to fiber-type shift, however, has not been elucidated. The calcineurin pathway is one of the pathways responsible for slow muscle fiber transition. Because calcineurin pathway is activated by vascular endothelial growth factor (VEGF), one of the factors induced by HIF-1α, we hypothesized that the stabilization of HIF-1α may lead to slow muscle fiber transition via the activation of calcineurin pathway in skeletal muscles. To induce HIF-1α stabilization, we used a loss of function strategy to abrogate Prolyl hydroxylase domain protein (PHD) 2 responsible for HIF-1α hydroxylation making HIF-1α susceptible to ubiquitin dependent degradation by proteasome. The purpose of this study was therefore to examine the effect of HIF-1α stabilization in PHD2 conditional knockout mouse on skeletal muscle fiber-type transition and to elucidate the involvement of calcineurin pathway on muscle fiber-type transition. PHD2 deficiency resulted in an increased capillary density in skeletal muscles due to the induction of vascular endothelial growth factor. It also elicited an alteration of skeletal muscle phenotype toward the type I fibers in both of the soleus (35.8 % in the control mice vs. 46.7 % in the PHD2-deficient mice, p < 0.01) and the gastrocnemius muscle (0.94 vs. 1.89 %, p < 0.01), and the increased proportion of type I fibers appeared to correspond to the area of increased capillary density. In addition, calcineurin and nuclear factor of activated T cell (NFATc1) protein levels were increased in both the gastrocnemius and soleus muscles, suggesting that the calcineurin/NFATc1 pathway was responsible for the type I fiber transition regardless of PGC-1α, which responded minimally to PHD2 deficiency. Indeed, we found that tacrolimus (FK-506), a calcineurin inhibitor, successfully suppressed slow fiber-type formation in PHD2-deficient mice. Taken together, stabilized HIF-1α induced by PHD2 conditional knockout resulted in the transition of muscle fibers toward a slow fiber type via a calcineurin/NFATc1 signaling pathway. PHD2 conditional knockout mice may serve as a model for chronic HIF-1α stabilization as in mice exposed to low oxygen concentration. The online version of this article (doi:10.1186/s13395-016-0079-5) contains supplementary material, which is available to authorized users.
Type One Protein Phosphatase 1 and Its Regulatory Protein Inhibitor 2 Negatively Regulate ABA Signaling
The phytohormone abscisic acid (ABA) regulates plant growth, development and responses to biotic and abiotic stresses. The core ABA signaling pathway consists of three major components: ABA receptor (PYR1/PYLs), type 2C Protein Phosphatase (PP2C) and SNF1-related protein kinase 2 (SnRK2). Nevertheless, the complexity of ABA signaling remains to be explored. To uncover new components of ABA signal transduction pathways, we performed a yeast two-hybrid screen for SnRK2-interacting proteins. We found that Type One Protein Phosphatase 1 (TOPP1) and its regulatory protein, At Inhibitor-2 (AtI-2), physically interact with SnRK2s and also with PYLs. TOPP1 inhibited the kinase activity of SnRK2.6, and this inhibition could be enhanced by AtI-2. Transactivation assays showed that TOPP1 and AtI-2 negatively regulated the SnRK2.2/3/6-mediated activation of the ABA responsive reporter gene RD29B, supporting a negative role of TOPP1 and AtI-2 in ABA signaling. Consistent with these findings, topp1 and ati-2 mutant plants displayed hypersensitivities to ABA and salt treatments, and transcriptome analysis of TOPP1 and AtI-2 knockout plants revealed an increased expression of multiple ABA-responsive genes in the mutants. Taken together, our results uncover TOPP1 and AtI-2 as negative regulators of ABA signaling. The phytohormone abscisic acid (ABA) regulates multiple developmental processes such as seed dormancy, germination, root/shoot growth, flowering and senescence in plants. Although the core ABA perception and signaling pathway has been elucidated, the complexity of the pathway remains to be exploited. In the present work, we uncovered two new proteins, TOPP1 and its regulatory protein AtI-2, interact with both ABA receptor PYLs and their downstream positive regulator SnRK2s. In addition to their physical interaction, TOPP1 could inhibit the kinase activity of SnRK2s and this inhibition could be further enhanced by AtI-2, which is likely due to a promotion of the interaction between TOPP1 and SnRK2s by AtI-2. topp1 and ati-2 mutants exhibited hypersensitivity to ABA and salt treatments; and transcriptome studies revealed multiple ABA-responsive genes were up-regulated in the mutants. In summary, our work identified two new components, TOPP1 and AtI-2, and characterized their negative roles in ABA signaling.
Imputation Accuracy from Low to Moderate Density Single Nucleotide Polymorphism Chips in a Thai Multibreed Dairy Cattle Population
The objective of this study was to investigate the accuracy of imputation from low density (LDC) to moderate density SNP chips (MDC) in a Thai Holstein-Other multibreed dairy cattle population. Dairy cattle with complete pedigree information (n = 1,244) from 145 dairy farms were genotyped with GeneSeek GGP20K (n = 570), GGP26K (n = 540) and GGP80K (n = 134) chips. After checking for single nucleotide polymorphism (SNP) quality, 17,779 SNP markers in common between the GGP20K, GGP26K, and GGP80K were used to represent MDC. Animals were divided into two groups, a reference group (n = 912) and a test group (n = 332). The SNP markers chosen for the test group were those located in positions corresponding to GeneSeek GGP9K (n = 7,652). The LDC to MDC genotype imputation was carried out using three different software packages, namely Beagle 3.3 (population-based algorithm), FImpute 2.2 (combined family- and population-based algorithms) and Findhap 4 (combined family- and population-based algorithms). Imputation accuracies within and across chromosomes were calculated as ratios of correctly imputed SNP markers to overall imputed SNP markers. Imputation accuracy for the three software packages ranged from 76.79% to 93.94%. FImpute had higher imputation accuracy (93.94%) than Findhap (84.64%) and Beagle (76.79%). Imputation accuracies were similar and consistent across chromosomes for FImpute, but not for Findhap and Beagle. Most chromosomes that showed either high (73%) or low (80%) imputation accuracies were the same chromosomes that had above and below average linkage disequilibrium (LD; defined here as the correlation between pairs of adjacent SNP within chromosomes less than or equal to 1 Mb apart). Results indicated that FImpute was more suitable than Findhap and Beagle for genotype imputation in this Thai multibreed population. Perhaps additional increments in imputation accuracy could be achieved by increasing the completeness of pedigree information.
Genetic Diversity Analysis of South and East Asian Duck Populations Using Highly Polymorphic Microsatellite Markers
Native duck populations have lower productivity, and have not been developed as much as commercials duck breeds. However, native ducks have more importance in terms of genetic diversity and potentially valuable economic traits. For this reason, population discriminable genetic markers are needed for conservation and development of native ducks. In this study, 24 highly polymorphic microsatellite (MS) markers were investigated using commercial ducks and native East and South Asian ducks. The average polymorphic information content (PIC) value for all MS markers was 0.584, indicating high discrimination power. All populations were discriminated using 14 highly polymorphic MS markers by genetic distance and phylogenetic analysis. The results indicated that there were close genetic relationships among populations. In the structure analysis, East Asian ducks shared more haplotypes with commercial ducks than South Asian ducks, and they had more independent haplotypes than others did. These results will provide useful information for genetic diversity studies in ducks and for the development of duck traceability systems in the market.
Hyaluronidase Inhibitory Activity of Pentacylic Triterpenoids from Prismatomeris tetrandra (Roxb.) K. Schum: Isolation, Synthesis and QSAR Study
The mammalian hyaluronidase degrades hyaluronic acid by the cleavage of the β-1,4-glycosidic bond furnishing a tetrasaccharide molecule as the main product which is a highly angiogenic and potent inducer of inflammatory cytokines. Ursolic acid 1, isolated from Prismatomeris tetrandra, was identified as having the potential to develop inhibitors of hyaluronidase. A series of ursolic acid analogues were either synthesized via structure modification of ursolic acid 1 or commercially obtained. The evaluation of the inhibitory activity of these compounds on the hyaluronidase enzyme was conducted. Several structural, topological and quantum chemical descriptors for these compounds were calculated using semi empirical quantum chemical methods. A quantitative structure activity relationship study (QSAR) was performed to correlate these descriptors with the hyaluronidase inhibitory activity. The statistical characteristics provided by the best multi linear model (BML) (R2 = 0.9717, R2cv = 0.9506) indicated satisfactory stability and predictive ability of the developed model. The in silico molecular docking study which was used to determine the binding interactions revealed that the ursolic acid analog 22 had a strong affinity towards human hyaluronidase.
The Arabidopsis tonoplast is almost devoid of glycoproteins with complex N glycans, unlike the rat lysosomal membrane
N-Glycosylation is very common in integral membrane proteins of the animal lysosome but it is very rare in Arabidopsis tonoplast proteins, indicating divergent evolution of the lysosomal and vacuolar membranes. The distribution of the N-glycoproteome in integral membrane proteins of the vacuolar membrane (tonoplast) or the plasma membrane of Arabidopsis thaliana and, for further comparison, of the Rattus norvegicus lysosomal and plasma membranes, was analyzed. In silico analysis showed that potential N-glycosylation sites are much less frequent in tonoplast proteins. Biochemical analysis of Arabidopsis subcellular fractions with the lectin concanavalin A, which recognizes mainly unmodified N-glycans, or with antiserum against Golgi-modified N-glycans confirmed the in silico results and showed that, unlike the plant plasma membrane, the tonoplast is almost or totally devoid of N-glycoproteins with Golgi-modified glycans. Lysosomes share with vacuoles the hydrolytic functions and the position along the secretory pathway; however, our results indicate that their membranes had a divergent evolution. We propose that protection against the luminal hydrolases that are abundant in inner hydrolytic compartments, which seems to have been achieved in many lysosomal membrane proteins by extensive N-glycosylation of the luminal domains, has instead been obtained in the vast majority of tonoplast proteins by limiting the length of such domains.
Two gonad infecting species of Philometra (Nematoda: Philometridae) from groupers (Serranidae) off Tunisia, with a key to Philometra species infecting serranid gonads
Based on light and scanning electron microscopical studies of nematode specimens (males and mature females) collected from the ovary of groupers (Serranidae, Perciformes) in the Mediterranean Sea off Tunisia (near Tunis and Sfax), two gonad-infecting species of Philometra Costa, 1845 (Nematoda, Philometridae) are reported: Philometra inexpectata n. sp. from the mottled grouper Mycteroperca rubra and P. jordanoi (López-Neyra, 1951) from the dusky grouper Epinephelus marginatus. Identification of both fish species was confirmed by molecular barcoding. The new species is mainly characterized by the length of equally long spicules (147–165 μm), the gubernaculum (63–93 μm long) bearing at the tip two dorsolateral lamellar parts separated from each other by a smooth median field, a V-shaped mound on the male caudal extremity, the presence of a pair of large caudal papillae located posterior to the cloaca and by the body length of the males (1.97–2.43 mm). Philometra inexpectata n. sp. is the fifth known gonad-infecting philometrid species parasitizing serranid fishes in the Mediterranean region. The males of P. jordanoi were examined by scanning electron microscopy for the first time; this detailed study revealed some new taxonomically important morphological features, such as the number and arrangement of cephalic and caudal papillae, presence of amphids and phasmids and mainly the lamellate structures at the posterior end of the gubernaculum. A key to gonad-infecting species of Philometra parasitic in serranid fishes is provided.
Rapid HIV 1 Disease Progression in Individuals Infected with a Virus Adapted to Its Host Population
HIV-1 escape from CTL is predictable based on the Human Leukocyte Antigen (HLA) class I alleles expressed by the host. As such, HIV-1 sequences circulating in a population of hosts will harbor escape mutations specific to the HLA alleles of that population. In theory, this should increase the frequency of escape mutation transmission to persons expressing the restricting HLA allele, thereby compromising host immunity to the incoming HIV-1 strain. However, the clinical impact of infection with HIV-1 containing immune escape mutations has not conclusively been demonstrated. Japan’s population features limited HLA diversity which is driving population-level HIV adaptation: for example, >60% of Japanese express HLA-A*24:02 and its associated Nef-Y135F escape mutation represents the population consensus. As such, Japan is an ideal population in which to examine this phenomenon. Here, we combine genetic and immunological analyses to identify A*24:02-positive individuals likely to have been infected with Y135F-containing HIV-1. Over a ~5 year follow-up, these individuals exhibited significantly lower CD4 counts compared to individuals inferred to have been infected with wild-type HIV-1. Our results support a significant negative clinical impact of pathogen adaptation to host pressures at the population level.
Decreased Expression of BNC1 and BNC2 Is Associated with Genetic or Epigenetic Regulation in Hepatocellular Carcinoma
The aberrant expression of transcription factor Basonuclin (BNC) had been reported in different kinds of tumors. Here, we investigated the expression and methylation status of two Basonuclin homologs, BNC1 and BNC2 in hepatocellular carcinoma (HCC). We found that the expression levels of both BNC1 and BNC2 were down-regulated in HCC cell lines and primary HCC tissues. The frequency and intensity of BNC1 promoter hypermethylation in tumor tissues was significantly higher than that in adjacent non-tumor tissues. 5-Aza-2’-Deoxycytidine treatment could significantly increase the BNC1 expression in the methylated HCC cell lines, which implicated that epigenetic modification contributed to the down-regulation of BNC1. In addition, BNC1 hypermethylation in tumor tissues was more likely to happen in female patients. No methylation of the BNC2 promoter was found in HCC tumor tissues. However, a frequent deletion of the BNC2 gene was observed, which indicated that the chromosomal loss of the BNC2 gene might be one important reason for its lower expression level in HCC. Our results suggested that BNC1 and BNC2 were down-regulated in HCC which may provide new insight into the tumorigenesis of HCC.
Cell wall associated ROOT HAIR SPECIFIC 10, a proline rich receptor like kinase, is a negative modulator of Arabidopsis root hair growth
RHS10 mediates cell wall-associated signals to maintain proper root hair length, potentially by regulating RNA catabolism and ROS accumulation. Plant cell growth is restricted by the cell wall, and cell wall dynamics act as signals for the cytoplasmic and nuclear events of cell growth. Among various receptor kinases, ROOT HAIR SPECIFIC 10 (RHS10) belongs to a poorly known receptor kinase subfamily with a proline-rich extracellular domain. Here, we report that RHS10 defines the root hair length of Arabidopsis thaliana by negatively regulating hair growth. RHS10 modulates the duration of root hair growth rather than the growth rate. As poplar and rice RHS10 orthologs also showed a root hair-inhibitory function, this receptor kinase-mediated function appears to be conserved in angiosperms. RHS10 showed a strong association with the cell wall, most probably through its extracellular proline-rich domain (ECD). Deletion analysis of the ECD demonstrated that a minimal extracellular part, which includes a few proline residues, is required for RHS10-mediated root hair inhibition. RHS10 suppressed the accumulation of reactive oxygen species (ROS) in the root, which are necessary for root hair growth. A yeast two-hybrid screening identified an RNase (RNS2) as a putative downstream target of RHS10. Accordingly, RHS10 overexpression decreased and RHS10 loss increased RNA levels in the hair-growing root region. Our results suggest that RHS10 mediates cell wall-associated signals to maintain proper root hair length, at least in part by regulating RNA catabolism and ROS accumulation.
Cry1Ac Transgenic Sugarcane Does Not Affect the Diversity of Microbial Communities and Has No Significant Effect on Enzyme Activities in Rhizosphere Soil within One Crop Season
Cry1Ac transgenic sugarcane provides a promising way to control stem-borer pests. Biosafety assessment of soil ecosystem for cry1Ac transgenic sugarcane is urgently needed because of the important role of soil microorganisms in nutrient transformations and element cycling, however little is known. This study aimed to explore the potential impact of cry1Ac transgenic sugarcane on rhizosphere soil enzyme activities and microbial community diversity, and also to investigate whether the gene flow occurs through horizontal gene transfer. We found no horizontal gene flow from cry1Ac sugarcane to soil. No significant difference in the population of culturable microorganisms between the non-GM and cry1Ac transgenic sugarcane was observed, and there were no significant interactions between the sugarcane lines and the growth stages. A relatively consistent trend at community-level, represented by the functional diversity index, was found between the cry1Ac sugarcane and the non-transgenic lines. Most soil samples showed no significant difference in the activities of four soil enzymes: urease, protease, sucrose, and acid phosphate monoester between the non-transgenic and cry1Ac sugarcane lines. We conclude, based on one crop season, that the cry1Ac sugarcane lines may not affect the microbial community structure and functional diversity of the rhizosphere soil and have few negative effects on soil enzymes.
Structures of ribosome bound initiation factor 2 reveal the mechanism of subunit association
Researchers determine the structure of the ribosome-bound initiation factor 2. Throughout the four phases of protein biosynthesis—initiation, elongation, termination, and recycling—the ribosome is controlled and regulated by at least one specified translational guanosine triphosphatase (trGTPase). Although the structural basis for trGTPase interaction with the ribosome has been solved for the last three steps of translation, the high-resolution structure for the key initiation trGTPase, initiation factor 2 (IF2), complexed with the ribosome, remains elusive. We determine the structure of IF2 complexed with a nonhydrolyzable guanosine triphosphate analog and initiator fMet-tRNAiMet in the context of the Escherichia coli ribosome to 3.7-Å resolution using cryo-electron microscopy. The structural analysis reveals previously unseen intrinsic conformational modes of the 70S initiation complex, establishing the mutual interplay of IF2 and initator transfer RNA (tRNA) with the ribsosome and providing the structural foundation for a mechanistic understanding of the final steps of translation initiation.
Mid Cretaceous amber fossils illuminate the past diversity of tropical lizards
Exquisitely preserved fossil lizards from 99-million-year-old Burmese amber provide new insights into paleotropical diversity. Modern tropical forests harbor an enormous diversity of squamates, but fossilization in such environments is uncommon and little is known about tropical lizard assemblages of the Mesozoic. We report the oldest lizard assemblage preserved in amber, providing insight into the poorly preserved but potentially diverse mid-Cretaceous paleotropics. Twelve specimens from the Albian-Cenomanian boundary of Myanmar (99 Ma) preserve fine details of soft tissue and osteology, and high-resolution x-ray computed tomography permits detailed comparisons to extant and extinct lizards. The extraordinary preservation allows several specimens to be confidently assigned to groups including stem Gekkota and stem Chamaleonidae. Other taxa are assignable to crown clades on the basis of similar traits. The detailed preservation of osteological and soft tissue characters in these specimens may facilitate their precise phylogenetic placement, making them useful calibration points for molecular divergence time estimates and potential keys for resolving conflicts in higher-order squamate relationships.
Whole Genome Sequence Analysis Using JSpecies Tool Establishes Clonal Relationships between Listeria monocytogenes Strains from Epidemiologically Unrelated Listeriosis Outbreaks
In an effort to build a comprehensive genomic approach to food safety challenges, the FDA has implemented a whole genome sequencing effort, GenomeTrakr, which involves the sequencing and analysis of genomes of foodborne pathogens. As a part of this effort, we routinely sequence whole genomes of Listeria monocytogenes (Lm) isolates associated with human listeriosis outbreaks, as well as those isolated through other sources. To rapidly establish genetic relatedness of these genomes, we evaluated tetranucleotide frequency analysis via the JSpecies program to provide a cursory analysis of strain relatedness. The JSpecies tetranucleotide (tetra) analysis plots standardized (z-score) tetramer word frequencies of two strains against each other and uses linear regression analysis to determine similarity (r2). This tool was able to validate the close relationships between outbreak related strains from four different outbreaks. Included in this study was the analysis of Lm strains isolated during the recent caramel apple outbreak and stone fruit incident in 2014. We identified that many of the isolates from these two outbreaks shared a common 4b variant (4bV) serotype, also designated as IVb-v1, using a qPCR protocol developed in our laboratory. The 4bV serotype is characterized by the presence of a 6.3 Kb DNA segment normally found in serotype 1/2a, 3a, 1/2c and 3c strains but not in serotype 4b or 1/2b strains. We decided to compare these strains at a genomic level using the JSpecies Tetra tool. Specifically, we compared several 4bV and 4b isolates and identified a high level of similarity between the stone fruit and apple 4bV strains, but not the 4b strains co-identified in the caramel apple outbreak or other 4b or 4bV strains in our collection. This finding was further substantiated by a SNP-based analysis. Additionally, we were able to identify close relatedness between isolates from clinical cases from 1993–1994 and a single case from 2011 as well as links between two isolates from over 30 years ago. The identification of these potential links shows that JSpecies Tetra analysis can be a useful tool in rapidly assessing genetic relatedness of Lm isolates during outbreak investigations and for comparing historical isolates. Our analyses led to the identification of a highly related clonal group involved in two separate outbreaks, stone fruit and caramel apple, and suggests the possibility of a new genotype that may be better adapted for certain foods and/or environment.
Archaeal Community Changes Associated with Cultivation of Amazon Forest Soil with Oil Palm
This study compared soil archaeal communities of the Amazon forest with that of an adjacent area under oil palm cultivation by 16S ribosomal RNA gene pyrosequencing. Species richness and diversity were greater in native forest soil than in the oil palm-cultivated area, and 130 OTUs (13.7%) were shared between these areas. Among the classified sequences, Thaumarchaeota were predominant in the native forest, whereas Euryarchaeota were predominant in the oil palm-cultivated area. Archaeal species diversity was 1.7 times higher in the native forest soil, according to the Simpson diversity index, and the Chao1 index showed that richness was five times higher in the native forest soil. A phylogenetic tree of unclassified Thaumarchaeota sequences showed that most of the OTUs belong to Miscellaneous Crenarchaeotic Group. Several archaeal genera involved in nutrient cycling (e.g., methanogens and ammonia oxidizers) were identified in both areas, but significant differences were found in the relative abundances of Candidatus Nitrososphaera and unclassified Soil Crenarchaeotic Group (prevalent in the native forest) and Candidatus Nitrosotalea and unclassified Terrestrial Group (prevalent in the oil palm-cultivated area). More studies are needed to culture some of these Archaea in the laboratory so that their metabolism and physiology can be studied.
Mechanisms involved in xyloglucan catabolism by the cellulosome producing bacterium Ruminiclostridium cellulolyticum
Xyloglucan, a ubiquitous highly branched plant polysaccharide, was found to be rapidly degraded and metabolized by the cellulosome-producing bacterium Ruminiclostridium cellulolyticum. Our study shows that at least four cellulosomal enzymes displaying either endo- or exoxyloglucanase activities, achieve the extracellular degradation of xyloglucan into 4-glucosyl backbone xyloglucan oligosaccharides. The released oligosaccharides (composed of up to 9 monosaccharides) are subsequently imported by a highly specific ATP-binding cassette transporter (ABC-transporter), the expression of the corresponding genes being strongly induced by xyloglucan. This polysaccharide also triggers the synthesis of cytoplasmic β-galactosidase, α-xylosidase, and β-glucosidase that act sequentially to convert the imported oligosaccharides into galactose, xylose, glucose and unexpectedly cellobiose. Thus R. cellulolyticum has developed an energy-saving strategy to metabolize this hemicellulosic polysaccharide that relies on the action of the extracellular cellulosomes, a highly specialized ABC-transporter, and cytoplasmic enzymes acting in a specific order. This strategy appears to be widespread among cellulosome-producing mesophilic bacteria which display highly similar gene clusters encoding the cytosolic enzymes and the ABC-transporter.
Hemodynamic Characteristics Regarding Recanalization of Completely Coiled Aneurysms: Computational Fluid Dynamic Analysis Using Virtual Models Comparison
Hemodynamic factors are considered to play an important role in initiation and progression of the recurrence after endosaccular coiling of the intracranial aneurysms. We made paired virtual models of completely coiled aneurysms which were subsequently recanalized and compared to identify hemodynamic characteristics related to the recurred aneurysmal sac. We created paired virtual models of computational fluid dynamics (CFD) in five aneurysms which were initially regarded as having achieved complete occlusion and then recurred during follow-up. Paired virtual models consisted of the CFD model of 3D rotational angiography obtained in the recurred aneurysm and the control model of the initial, parent artery after artificial removal of the coiled and recanalized aneurysm. Using the CFD analysis of the virtual model, we analyzed the hemodynamic characteristics on the neck of each aneurysm before and after its recurrence. High wall shear stress (WSS) was identified at the cross-sectionally identified aneurysm neck at which recurrence developed in all cases. A small vortex formation with relatively low velocity in front of the neck was also identified in four cases. The aneurysm recurrence locations corresponded to the location of high WSS and/or small vortex formation. Recanalized aneurysms revealed increased WSS and small vortex formation at the cross-sectional neck of the aneurysm. This observation may partially explain the hemodynamic causes of future recanalization after coil embolization.
Bacterial symbionts of the leafhopper Evacanthus interruptus (Linnaeus, 1758) (Insecta, Hemiptera, Cicadellidae: Evacanthinae)
Plant sap-feeding hemipterans harbor obligate symbiotic microorganisms which are responsible for the synthesis of amino acids missing in their diet. In this study, we characterized the obligate symbionts hosted in the body of the xylem-feeding leafhopper Evacanthus interruptus (Cicadellidae: Evacanthinae: Evacanthini) by means of histological, ultrastructural and molecular methods. We observed that E. interruptus is associated with two types of symbiotic microorganisms: bacterium ‘Candidatus Sulcia muelleri’ (Bacteroidetes) and betaproteobacterium that is closely related to symbionts which reside in two other Cicadellidae representatives: Pagaronia tredecimpunctata (Evacanthinae: Pagaronini) and Hylaius oregonensis (Bathysmatophorinae: Bathysmatophorini). Both symbionts are harbored in their own bacteriocytes which are localized between the body wall and ovaries. In E. interruptus, both Sulcia and betaproteobacterial symbionts are transovarially transmitted from one generation to the next. In the mature female, symbionts leave the bacteriocytes and gather around the posterior pole of the terminal oocytes. Then, they gradually pass through the cytoplasm of follicular cells surrounding the posterior pole of the oocyte and enter the space between them and the oocyte. The bacteria accumulate in the deep depression of the oolemma and form a characteristic ‘symbiont ball’. In the light of the results obtained, the phylogenetic relationships within modern Cicadomorpha and some Cicadellidae subfamilies are discussed.
Combinatorial treatment with oncolytic adenovirus and helper dependent adenovirus augments adenoviral cancer gene therapy
Oncolytic adenoviruses (Onc.Ads) produce significant antitumor effects but as single agents they rarely eliminate tumors. Investigators have therefore incorporated sequences into these vectors that encode immunomodulatory molecules to enhance antitumor immunity. Successful implementation of this strategy requires multiple tumor immune inhibitory mechanisms to be overcome, and insertion of the corresponding multiple functional genes reduces the titer and replication of Onc.Ads, compromising their direct ant-tumor effects. By contrast, helper-dependent (HD) Ads are devoid of viral coding sequences, allowing inclusion of multiple transgenes. HDAds, however, lack replicative capacity. Since HDAds encode the adenoviral packaging signal, we hypothesized that the coadministration of Onc.Ad with HDAd would allow to be amplified and packaged during replication of Onc.Ad in transduced cancer cells. This combination could provide immunostimulation without losing oncolytic activity. We now show that coinfection of Onc.Ad with HDAd subsequently replicates HDAd vector DNA in trans in human cancer cell lines in vitro and in vivo, amplifying the transgenes the HDAd encode. This combinatorial treatment significantly suppresses the tumor growth compared to treatment with a single agent in an immunocompetent mouse model. Hence, combinatorial treatment of Onc.Ad with HDAd should overcome the inherent limitations of each agent and provide a highly immunogenic oncolytic therapy.
Global miRNA expression is temporally correlated with acute kidney injury in mice
MicroRNAs (miRNAs) are negative regulators of gene expression and protein abundance. Current evidence shows an association of miRNAs with acute kidney injury (AKI) leading to substantially increased morbidity and mortality. Here, we investigated whether miRNAs are inductive regulators responsible for the pathological development of AKI. Microarray analysis was used to detect temporal changes in global miRNA expression within 48 h after AKI in mice. Results indicated that global miRNA expression gradually increased over 24 h from ischemia reperfusion injury after 24 h, and then decreased from 24 h to 48 h. A similar trend was observed for the index of tubulointerstitial injury and the level of serum creatinine, and there was a significant correlation between the level of total miRNA expression and the level of serum creatinine (p < 0.05). This expression-phenotype correlation was validated by quantitative reverse transcription PCR on individual miRNAs, including miR-18a, -134, -182, -210 and -214. Increased global miRNA expression may lead to widespread translational repression and reduced cellular activity. Furthermore, significant inflammatory cytokine release and peritubular capillary loss were observed, suggesting that the initiation of systematic destruction programs was due to AKI. Our findings provide new understanding of the dominant role of miRNAs in promoting the pathological development of AKI.
Genome wide discovered psychosis risk gene ZNF804A impacts on white matter microstructure in health, schizophrenia and bipolar disorder
Background. Schizophrenia (SZ) and bipolar disorder (BD) have both been associated with reduced microstructural white matter integrity using, as a proxy, fractional anisotropy (FA) detected using diffusion tensor imaging (DTI). Genetic susceptibility for both illnesses has also been positively correlated in recent genome-wide association studies with allele A (adenine) of single nucleotide polymorphism (SNP) rs1344706 of the ZNF804A gene. However, little is known about how the genomic linkage disequilibrium region tagged by this SNP impacts on the brain to increase risk for psychosis. This study aimed to assess the impact of this risk variant on FA in patients with SZ, in those with BD and in healthy controls. Methods. 230 individuals were genotyped for the rs1344706 SNP and underwent DTI. We used tract-based spatial statistics (TBSS) followed by an analysis of variance, with threshold-free cluster enhancement (TFCE), to assess underlying effects of genotype, diagnosis and their interaction, on FA. Results. As predicted, statistically significant reductions in FA across a widely distributed brain network (p < 0.05, TFCE-corrected) were positively associated both with a diagnosis of SZ or BD and with the double (homozygous) presence of the ZNF804A rs1344706 risk variant (A). The main effect of genotype was medium (d = 0.48 in a 44,054-voxel cluster) and the effect in the SZ group alone was large (d = 1.01 in a 51,260-voxel cluster), with no significant effects in BD or controls, in isolation. No areas under a significant diagnosis by genotype interaction were found. Discussion. We provide the first evidence in a predominantly Caucasian clinical sample, of an association between ZNF804A rs1344706 A-homozygosity and reduced FA, both irrespective of diagnosis and particularly in SZ (in overlapping brain areas). This suggests that the previously observed involvement of this genomic region in psychosis susceptibility, and in impaired functional connectivity, may be conferred through it inducing abnormalities in white matter microstructure.
Patterns of regional cerebellar atrophy in genetic frontotemporal dementia
Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder with a strong genetic component. The cerebellum has not traditionally been felt to be involved in FTD but recent research has suggested a potential role. We investigated the volumetry of the cerebellum and its subregions in a cohort of 44 patients with genetic FTD (20 MAPT, 7 GRN, and 17 C9orf72 mutation carriers) compared with 18 cognitively normal controls. All groups were matched for age and gender. On volumetric T1-weighted magnetic resonance brain images we used an atlas propagation and label fusion strategy of the Diedrichsen cerebellar atlas to automatically extract subregions including the cerebellar lobules, the vermis and the deep nuclei. The global cerebellar volume was significantly smaller in C9orf72 carriers (mean (SD): 99989 (8939) mm3) compared with controls (108136 (7407) mm3). However, no significant differences were seen in the MAPT and GRN carriers compared with controls (104191 (6491) mm3 and 107883 (6205) mm3 respectively). Investigating the individual subregions, C9orf72 carriers had a significantly lower volume than controls in lobule VIIa-Crus I (15% smaller, p < 0.0005), whilst MAPT mutation carriers had a significantly lower vermal volume (10% smaller, p = 0.001) than controls. All cerebellar subregion volumes were preserved in GRN carriers compared with controls. There appears to be a differential pattern of cerebellar atrophy in the major genetic forms of FTD, being relatively spared in GRN, localized to the lobule VIIa-Crus I in the superior-posterior region of the cerebellum in C9orf72, the area connected via the thalamus to the prefrontal cortex and involved in cognitive function, and localized to the vermis in MAPT, the ‘limbic cerebellum’ involved in emotional processing. • Different pattern of cerebellar atrophy in the major genetic forms of FTD • Involvement of the lobule VIIa-Crus I in C9orf72 carriers, related to cognition • MAPT carriers show vermal involvement, linked to emotional processing • GRN carriers show relative sparing of the cerebellum Different pattern of cerebellar atrophy in the major genetic forms of FTD Involvement of the lobule VIIa-Crus I in C9orf72 carriers, related to cognition MAPT carriers show vermal involvement, linked to emotional processing GRN carriers show relative sparing of the cerebellum
Dataset of mouse hippocampus profiled by LC–MS/MS for label free quantitation
This dataset reports on the analysis of mouse hippocampus by LC–MS/MS, from mice fed a diet that was either deficient in n-3 FA (n-3 Def) or sufficient in n-3 FA (n-3 Adq). Label free quantitative (LFQ) analysis of the mass spectrometry data identified 1008 quantifiable proteins, 115 of which were found to be differentially expressed between the two dietary groups (n=8 per group). This data article refers to the research article “Omega-3 fatty acid deficiency disrupts endocytosis, neuritogenesis, and mitochondrial protein pathways in the mouse hippocampus” (English et al., 2013 [1]), in which a more comprehensive interpretation and analysis of the data is given.
Increasing land use drives changes in plant phylogenetic diversity and prevalence of specialists
Increased human land use has resulted in the increased homogenization of biodiversity between sites, yet we lack sufficient indicators to predict which species decline and the consequence of their potential loss on ecosystem services. We used comparative phylogenetic analysis to (1) characterize how increasing conversion of forest and grasslands to grazing pasturelands changes plant diversity and composition; (2) examine how changes in land use relate to declines in functional trait diversity; and (3) specifically investigate how these changes in plant composition affect the prevalence of zygomorphy and the possible consequences that these changes may have on pollinator functional groups. As predicted, we found that the conversion to grazing pasturelands negatively impacted species richness and phylogenetic composition. Clades with significantly more represented taxa in grasslands (GL) were genera with a high representation of agricultural weeds, while the composition was biased towards clades of subalpine herbaceous wildflowers in Mixed Forest (MF). Changes in community composition and structure had strong effects on the prevalence of zygomorphic species likely driven by nitrogen-fixing abilities of certain clades with zygomorphic flowers (e.g., Fabaceae). Land conversion can thus have unexpected impacts on trait distributions relevant for the functioning of the community in other capacities (e.g., cascading effects to other trophic levels (i.e., pollinators). Finally, the combination of traits represented by the current composition of species in GL and MF might enhance the diagnostic value of productivity and ecosystem processes in the most eroded ecosystems.
Comparison of three clustering approaches for detecting novel environmental microbial diversity
Discovery of novel diversity in high-throughput sequencing studies is an important aspect in environmental microbial ecology. To evaluate the effects that amplicon clustering methods have on the discovery of novel diversity, we clustered an environmental marine high-throughput sequencing dataset of protist amplicons together with reference sequences from the taxonomically curated Protist Ribosomal Reference (PR2) database using three de novo approaches: sequence similarity networks, USEARCH, and Swarm. The potentially novel diversity uncovered by each clustering approach differed drastically in the number of operational taxonomic units (OTUs) and in the number of environmental amplicons in these novel diversity OTUs. Global pairwise alignment comparisons revealed that numerous amplicons classified as potentially novel by USEARCH and Swarm were more than 97% similar to references of PR2. Using shortest path analyses on sequence similarity network OTUs and Swarm OTUs we found additional novel diversity within OTUs that would have gone unnoticed without further exploiting their underlying network topologies. These results demonstrate that graph theory provides powerful tools for microbial ecology and the analysis of environmental high-throughput sequencing datasets. Furthermore, sequence similarity networks were most accurate in delineating novel diversity from previously discovered diversity.
New phiomorph rodents from the latest Eocene of Egypt, and the impact of Bayesian “clock” based phylogenetic methods on estimates of basal hystricognath relationships and biochronology
The Fayum Depression of Egypt has yielded fossils of hystricognathous rodents from multiple Eocene and Oligocene horizons that range in age from ∼37 to ∼30 Ma and document several phases in the early evolution of crown Hystricognathi and one of its major subclades, Phiomorpha. Here we describe two new genera and species of basal phiomorphs, Birkamys korai and Mubhammys vadumensis, based on rostra and maxillary and mandibular remains from the terminal Eocene (∼34 Ma) Fayum Locality 41 (L-41). Birkamys is the smallest known Paleogene hystricognath, has very simple molars, and, like derived Oligocene-to-Recent phiomorphs (but unlike contemporaneous and older taxa) apparently retained dP4∕4 late into life, with no evidence for P4∕4 eruption or formation. Mubhammys is very similar in dental morphology to Birkamys, and also shows no evidence for P4∕4 formation or eruption, but is considerably larger. Though parsimony analysis with all characters equally weighted places Birkamys and Mubhammys as sister taxa of extant Thryonomys to the exclusion of much younger relatives of that genus, all other methods (standard Bayesian inference, Bayesian “tip-dating,” and parsimony analysis with scaled transitions between “fixed” and polymorphic states) place these species in more basal positions within Hystricognathi, as sister taxa of Oligocene-to-Recent phiomorphs. We also employ tip-dating as a means for estimating the ages of early hystricognath-bearing localities, many of which are not well-constrained by geological, geochronological, or biostratigraphic evidence. By simultaneously taking into account phylogeny, evolutionary rates, and uniform priors that appropriately encompass the range of possible ages for fossil localities, dating of tips in this Bayesian framework allows paleontologists to move beyond vague and assumption-laden “stage of evolution” arguments in biochronology to provide relatively rigorous age assessments of poorly-constrained faunas. This approach should become increasingly robust as estimates are combined from multiple independent analyses of distantly related clades, and is broadly applicable across the tree of life; as such it is deserving of paleontologists’ close attention. Notably, in the example provided here, hystricognathous rodents from Libya and Namibia that are controversially considered to be of middle Eocene age are instead estimated to be of late Eocene and late Oligocene age, respectively. Finally, we reconstruct the evolution of first lower molar size among Paleogene African hystricognaths using a Bayesian approach; the results of this analysis reconstruct a rapid latest Eocene dwarfing event along the lineage leading to Birkamys.
Mussels (Perna perna) as bioindicator of environmental contamination by Cryptosporidium species with zoonotic potential
Sources of contamination such as animal feces runoff, organic fertilizer application, and the release of partially treated or untreated sewage can lead to the contamination of aquatic environments by Cryptosporidium spp. The quality of mussels as food is closely related to the sanitary conditions of the marine environment where these bivalves are found. Marine mollusks are filter feeders that are able to retain Cryptosporidium oocysts in their tissue, thus functioning as bioindicators. A total of 72 pooled mussel samples of the species Perna perna were collected at two sites (A and B) in the municipality of Mangaratiba, Rio de Janeiro State, Brazil. Sampling involved removal of 30 mussels, from each collection site every month for one year. The 30 mussels from each sampling were then allocated into three groups of 10. Two Cryptosporidium spp. genes (18S and GP60) were targeted for DNA amplification from the samples obtained. After purification, all of the products obtained were sequenced and phylogenetic analyses were performed. Of the 72 samples analyzed using the nested-PCR for the 18S gene target, 29.2% were positive for the presence of Cryptosporidium spp. Of these samples, 52.4% were collected at site A (ie 11/21) and 47.6% at site B (ie 10/21). The 18S genes of all the samples considered positive for Cryptosporidium spp. were sequenced, and the following three species were identified: Cryptosporidium parvum, C. meleagridis, and C. andersoni. Three distinct C. parvum subtypes (IIaA19G2R2; IIaA20G2R2; IIaA20G3R2) were identified using the GP60 gene. More studies to evaluate the zoonotic potential of this species should be performed as both sampling locations contain human and/or animal fecal contaminants. • Different species of Cryptosporidium diagnosed in Perna perna mussels. • C. parvum subtypes of IIa zoonotic subfamily diagnosed in P. perna mussels. • First report of the zoonotic species C. meleagridis in Brazilian mollusk bivalves. • Mollusks bivalves used as bioindicator of environmental pollution. Different species of Cryptosporidium diagnosed in Perna perna mussels. C. parvum subtypes of IIa zoonotic subfamily diagnosed in P. perna mussels. First report of the zoonotic species C. meleagridis in Brazilian mollusk bivalves. Mollusks bivalves used as bioindicator of environmental pollution.
Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin protein ligases
The ubiquitin-proteasome system targets misfolded proteins for degradation. Since the accumulation of such proteins is potentially harmful for the cell, their prompt removal is important. E3 ubiquitin-protein ligases mediate substrate ubiquitination by bringing together the substrate with an E2 ubiquitin-conjugating enzyme, which transfers ubiquitin to the substrate. For misfolded proteins, substrate recognition is generally delegated to molecular chaperones that subsequently interact with specific E3 ligases. An important exception is San1, a yeast E3 ligase. San1 harbors extensive regions of intrinsic disorder, which provide both conformational flexibility and sites for direct recognition of misfolded targets of vastly different conformations. So far, no mammalian ortholog of San1 is known, nor is it clear whether other E3 ligases utilize disordered regions for substrate recognition. Here, we conduct a bioinformatics analysis to examine >600 human and S. cerevisiae E3 ligases to identify enzymes that are similar to San1 in terms of function and/or mechanism of substrate recognition. An initial sequence-based database search was found to detect candidates primarily based on the homology of their ordered regions, and did not capture the unique disorder patterns that encode the functional mechanism of San1. However, by searching specifically for key features of the San1 sequence, such as long regions of intrinsic disorder embedded with short stretches predicted to be suitable for substrate interaction, we identified several E3 ligases with these characteristics. Our initial analysis revealed that another remarkable trait of San1 is shared with several candidate E3 ligases: long stretches of complete lysine suppression, which in San1 limits auto-ubiquitination. We encode these characteristic features into a San1 similarity-score, and present a set of proteins that are plausible candidates as San1 counterparts in humans. In conclusion, our work indicates that San1 is not a unique case, and that several other yeast and human E3 ligases have sequence properties that may allow them to recognize substrates by a similar mechanism as San1.
Changes over lactation in breast milk serum proteins involved in the maturation of immune and digestive system of the infant
Here we provide data from shot-gun proteomics, using filtered-aided sample preparation (FASP), dimethyl labeling and LC–MS/MS, to quantify the changes in the repertoire of human milk proteins over lactation. Milk serum proteins were analyzed at week 1, 2, 3 4, 8, 16, and 24 in milk from four individual mothers. A total of 247 proteins were identified, of which 200 proteins were quantified. The data supplied in this article supports the accompanying publication (Zhang et al., 2006) [1]. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaíno et al., 2016) [2] via the PRIDE partner repository with the dataset identifier PXD003465.
Single cell differences in matrix gene expression do not predict matrix deposition
Mesenchymal stem cells (MSCs) display substantial cell-to-cell heterogeneity, complicating their use in regenerative medicine. However, conventional bulk assays mask this variability. Here we show that both chondrocytes and chondrogenically induced MSCs exhibit substantial mRNA expression heterogeneity. Single-molecule RNA FISH to measure mRNA expression of differentiation markers in single cells reveals that sister cell pairs have high levels of mRNA variability, suggesting that marker expression is not heritable. Surprisingly, this variability does not correlate with cell-to-cell differences in cartilage-like matrix production. Transcriptome-wide analysis suggests that no combination of markers can predict functional potential. De-differentiating chondrocytes also show a disconnect between mRNA expression of the cartilage marker aggrecan and cartilage-like matrix accumulation. Altogether, these quantitative analyses suggest that sorting subpopulations based on these markers would only marginally enrich the progenitor population for ‘superior' MSCs. Our results suggest that instantaneous mRNA abundance of canonical markers is tenuously linked to the chondrogenic phenotype at the single-cell level. Regenerative tissue engineering with mesenchymal stem cells is hampered by bulk methods of assessing differentiation status and a general assumption that expression of individual markers of stem cell differentiation correlate with functional capacity. Here the authors debunk this assumption by applying single-cell techniques to disassociate aggrecan mRNA abundance and matrix deposition.
Morphological and molecular characterization of Eimeria purpureicephali n. sp. (Apicomplexa:Eimeriidae) in a red capped parrot (Purpureicephalus spurius, Kuhl, 1820) in Western Australia
A new Eimeria species is described from a red-capped parrot (Purpureicephalus spurius). Sporulated oocysts (n = 31) were spherical to subspherical, with a rough bilayered oocyst wall 0.8 μm thick. Oocysts measured 24.0 × 22.8 (20.4–26.4 × 18.3–25.9) μm, oocyst length/width ratio, 1.10. Oocyst residuum, polar granule and micropyle were absent. Sporocysts are elongate-ovoid, 11.0 × 7.3 (12.7–9.2 × 7.9–6.6) μm, sporocyst length/width ratio, 1.51 (1.33–1.71). The thin convex Stieda body and indistinct substieda bodies were present and the sporocyst residuum was composed of numerous small granules less than 1.0 μm in diameter dispersed randomly. Each sporocyst contained 2 sausage-shaped sporozoites in head-to-tail arrangement. The sporozoite nuclei were located centrally surrounded by refractile bodies. Molecular analysis was conducted at two loci; the 18S ribosomal RNA gene and the cytochrome c oxidase subunit I gene. At the18S locus, the new isolate shared 99.0% genetic similarity with Eimeria dispersa and Eimeria innocua from the turkey. At the cytochrome c oxidase subunit I gene locus, this new isolate was most closely related to E. dispersa and E. innocua, presented 99.0% and 98.0% genetic similarity, respectively. This new isolate and E. dispersa grouped together in the same clade. Based on the morphological and molecular data, this isolate is a new species of coccidian parasite, which is named Eimeria purpureicephali n. sp. after its host, the red-capped parrot (Purpureicephalus spurius). • A new Eimeria species (E. purpureicephali n. sp.) in a red-capped parrot. • Morphology study: distinct to other validated Eimeria species. • Genetic study: 99% similarity with E. dispersa at 18S and COI loci. A new Eimeria species (E. purpureicephali n. sp.) in a red-capped parrot. Morphology study: distinct to other validated Eimeria species. Genetic study: 99% similarity with E. dispersa at 18S and COI loci.
Sexual differences in prevalence of a new species of trypanosome infecting túngara frogs
Trypanosomes are a diverse group of protozoan parasites of vertebrates transmitted by a variety of hematophagous invertebrate vectors. Anuran trypanosomes and their vectors have received relatively little attention even though these parasites have been reported from frog and toad species worldwide. Blood samples collected from túngara frogs (Engystomops pustulosus), a Neotropical anuran species heavily preyed upon by eavesdropping frog-biting midges (Corethrella spp.), were examined for trypanosomes. Our results revealed sexual differences in trypanosome prevalence with female frogs being rarely infected (<1%). This finding suggests this protozoan parasite may be transmitted by frog-biting midges that find their host using the mating calls produced by male frogs. Following previous anuran trypanosome studies, we examined 18S ribosomal RNA gene to characterize and establish the phylogenetic relationship of the trypanosome species found in túngara frogs. A new species of giant trypanosome, Trypanosoma tungarae n. sp., is described in this study. Overall the morphometric data revealed that the trypomastigotes of T. tungarae n. sp. are similar to other giant trypanosomes such as Trypanosoma rotatorium and Trypanosoma ranarum. Despite its slender and long cell shape, however, 18S rRNA gene sequences revealed that T. tungarae n. sp. is sister to the rounded-bodied giant trypanosome, Trypanosoma chattoni. Therefore, morphological convergence explains similar morphology among members of two non-closely related groups of trypanosomes infecting frogs. The results from this study underscore the value of coupling morphological identification with molecular characterization of anuran trypanosomes. • There is higher prevalence of trypanosome in male than female túngara frogs. • Sexual differences in infection suggest potential transmission by frog-biting midges. • Trypanosoma tungarae n. sp. is a new species infecting túngara frogs. • This parasite resembles other giant frog trypanosomes from the Aquatic clade. There is higher prevalence of trypanosome in male than female túngara frogs. Sexual differences in infection suggest potential transmission by frog-biting midges. Trypanosoma tungarae n. sp. is a new species infecting túngara frogs. This parasite resembles other giant frog trypanosomes from the Aquatic clade.
Lungworm seroprevalence in free ranging harbour seals and molecular characterisation of marine mammal MSP
Harbour seals (Phoca vitulina) are frequently infected with the lungworms Otostrongylus circumlitus and Parafilaroides gymnurus. The infection is often accompanied by secondary bacterial infections and can cause severe bronchopneumonia and even death in affected animals. Hitherto, the detection of lungworm infections was based on post mortem investigations from animals collected within stranding networks and a valid detection method for live free-ranging harbour seals was not available. Recently, an ELISA was developed for detecting lungworm antibodies in harbour seal serum, using major sperm protein (MSP) of the bovine lungworm, Dictyocaulus viviparus as recombinant diagnostic antigen. To determine lungworm seroprevalence in free-ranging harbour seals, serum was taken from four different seal age groups (n = 313) resulting in an overall prevalence of 17.9% (18.9% of males, 16.7% of females). 0.7% of harbour seals up to six weeks of age were seropositive, as were 89% of seals between six weeks and six months, 53.6% between six and 18 months and 24.2% of seals over 18 months of age. In the 18 months and over age group, seropositive animals showed statistically significant reductions in body weight (P = 0.003) and length (P < 0.001). Sera from lungworm infected harbour seals in rehabilitation (n = 6) revealed that duration of antibody persistence may be similar to that of lungworm infected cattle, but further studies are needed to confirm this. Phylogenetic analyses of MSP sequences of different marine and terrestrial mammal parasitic nematodes revealed that lungworm MSP of the genus Dictyocaulus (superfamily Trichostrongyloidea) is more closely related to metastrongylid marine mammal lungworms than to trichostrongylid nematodes of terrestrial hosts. • First study on lungworm seroprevalence in live free-ranging harbour seals. • Total seroprevalence was 17.9%, but age-dependent differences were observed. • Six weeks to six months old seals showed highest prevalences (89% positives). • Seropositive adult seals showed significantly reduced body weight and length. • Phylogenetic tree construction using MSP of marine and terrestrial mammal parasites. First study on lungworm seroprevalence in live free-ranging harbour seals. Total seroprevalence was 17.9%, but age-dependent differences were observed. Six weeks to six months old seals showed highest prevalences (89% positives). Seropositive adult seals showed significantly reduced body weight and length. Phylogenetic tree construction using MSP of marine and terrestrial mammal parasites.
A systematic review of pediatric clinical trials of high dose vitamin D
Background. Due to inadequate UV exposure, intake of small quantities of vitamin D is recommended to prevent musculoskeletal disease. Both basic science and observational literature strongly suggest that higher doses may benefit specific populations and have non-musculoskeletal roles. Evaluating the evidence surrounding high dose supplementation can be challenging given a relatively large and growing body of clinical trial evidence spanning time, geography, populations and dosing regimens. Study objectives were to identify and summarize the clinical trial literature, recognize areas with high quality evidence, and develop a resource database that makes the literature more immediately accessible to end users. Methods. Medline (1946 to January 2015), Embase (1974 to January 2015), and Cochrane databases (January 2015), were searched for trials. All pediatric (0–18 years) trials administering doses higher than 400 IU (<1 year) or 600 IU (≥1 year) were included. Data was extracted independently by two of the authors. An online searchable database of trials was developed containing relevant extracted information (http://www.cheori.org/en/pedvitaminddatabaseOverview). Sensitivity and utility were assessed by comparing the trials in the database with those from systematic reviews of vitamin D supplementation including children. Results. A total of 2,579 candidate papers were identified, yielding 169 trials having one or more arms meeting eligibility criteria. The publication rate has increased significantly from 1 per year (1970–1979) to 14 per year (2010–2015). Although 84% of the total trials focused on healthy children or known high risk populations (e.g., renal, prematurity), this proportion has declined in recent years due to the rise in trials evaluating populations and outcomes not directly related to the musculoskeletal actions of vitamin D (27% in 2010s). Beyond healthy children, the only pediatric populations with more than 50 participants from low risk of bias trials evaluating a clinically relevant outcome were prematurity and respiratory illness. Finally, we created and validated the online searchable database using 13 recent systematic reviews. Of the 38 high dose trials identified by the systematic review, 36 (94.7%) could be found within the database. When compared with the search strategy reported in each systematic review, use of the database reduced the number of full papers to assess for eligibility by 85.2% (±13.4%). Conclusion. The pediatric vitamin D field is highly active, with a significant increase in trials evaluating non-classical diseases and outcomes. Despite the large overall number there are few high quality trials of sufficient size to provide answers on clinical efficacy of high-dose vitamin D. An open access online searchable data should assist end users in the rapid and comprehensive identification and evaluation of trials relevant to their population or question of interest.
Data collection with a tailored X ray beam size at 2.69 Å wavelength (4.6 keV): sulfur SAD phasing of Cdc23Nterm
Data collection with a tailored 50 µm diameter X-ray beam at 4.6 keV (λ = 2.69 Å) on the newly established EMBL beamline P13 at PETRA III allowed the crystal structure determination of the Cdc23Nterm homodimer (65.4 kDa; 12 Cys and ten Met residues) by sulfur SAD phasing at 3.1 Å resolution while overcoming crystal twinning. The capability to reach wavelengths of up to 3.1 Å at the newly established EMBL P13 beamline at PETRA III, the new third-generation synchrotron at DESY in Hamburg, provides the opportunity to explore very long wavelengths to harness the sulfur anomalous signal for phase determination. Data collection at λ = 2.69 Å (4.6 keV) allowed the crystal structure determination by sulfur SAD phasing of Cdc23Nterm, a subunit of the multimeric anaphase-promoting complex (APC/C). At this energy, Cdc23Nterm has an expected Bijvoet ratio 〈|F anom|〉/〈F〉 of 2.2%, with 282 residues, including six cysteines and five methionine residues, and two molecules in the asymmetric unit (65.4 kDa; 12 Cys and ten Met residues). Selectively illuminating two separate portions of the same crystal with an X-ray beam of 50 µm in diameter allowed crystal twinning to be overcome. The crystals diffracted to 3.1 Å resolution, with unit-cell parameters a = b = 61.2, c = 151.5 Å, and belonged to space group P43. The refined structure to 3.1 Å resolution has an R factor of 18.7% and an R free of 25.9%. This paper reports the structure solution, related methods and a discussion of the instrumentation.
Data collection strategy for challenging native SAD phasing
The successful structure solution of the integral membrane diacylglycerol kinase and the CRISPR-associated endonuclease RNA–DNA complex by native SAD phasing is demonstrated. The structures were solved with a combined low-dose multi-orientation, multi-crystal data-collection strategy. Recent improvements in data-collection strategies have pushed the limits of native SAD (single-wavelength anomalous diffraction) phasing, a method that uses the weak anomalous signal of light elements naturally present in macromolecules. These involve the merging of multiple data sets from either multiple crystals or from a single crystal collected in multiple orientations at a low X-ray dose. Both approaches yield data of high multiplicity while minimizing radiation damage and systematic error, thus ensuring accurate measurements of the anomalous differences. Here, the combined use of these two strategies is described to solve cases of native SAD phasing that were particular challenges: the integral membrane diacylglycerol kinase (DgkA) with a low Bijvoet ratio of 1% and the large 200 kDa complex of the CRISPR-associated endonuclease (Cas9) bound to guide RNA and target DNA crystallized in the low-symmetry space group C2. The optimal native SAD data-collection strategy based on systematic measurements performed on the 266 kDa multiprotein/multiligand tubulin complex is discussed.
Different Patterns of Cortical Inputs to Subregions of the Primary Motor Cortex Hand Representation in Cebus apella
The primary motor cortex (M1) plays an essential role in the control of hand movements in primates and is part of a complex cortical sensorimotor network involving multiple premotor and parietal areas. In a previous study in squirrel monkeys, we found that the ventral premotor cortex (PMv) projected mainly to 3 regions within the M1 forearm representation [rostro-medial (RM), rostro-lateral (RL), and caudo-lateral (CL)] with very few caudo-medial (CM) projections. These results suggest that projections from premotor areas to M1 are not uniform, but rather segregated into subregions. The goal of the present work was to study how inputs from diverse areas of the ipsilateral cortical network are organized within the M1 hand representation. In Cebus apella, different retrograde neuroanatomical tracers were injected in 4 subregions of the hand area of M1 (RM, RL, CM, and CL). We found a different pattern of input to each subregion of M1. RM receives inputs predominantly from dorsal premotor cortex, RL from PMv, CM from area 5, and CL from area 2. These results support that the M1 hand representation is composed of several subregions, each part of a unique cortical network.
Initiating heavy atom based phasing by multi dimensional molecular replacement
A strategy is presented to set up an n-dimensional molecular-replacement parameter matrix (MRPM) search using anomalous difference Fourier maps from related data sets to uncover weak, but correct, molecular-replacement solutions for heavy-atom substructure determination and subsequent experimental phasing. To obtain an electron-density map from a macromolecular crystal the phase problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitant heavy-atom substructure determination. This is typically performed by dual-space methods, direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are available. This is often the case for, for example, membrane proteins. Here, an approach for heavy-atom site identification based on a molecular-replacement parameter matrix (MRPM) is presented. It involves an n-dimensional search to test a wide spectrum of molecular-replacement parameters, such as different data sets and search models with different conformations. Results are scored by the ability to identify heavy-atom positions from anomalous difference Fourier maps. The strategy was successfully applied in the determination of a membrane-protein structure, the copper-transporting P-type ATPase CopA, when other methods had failed to determine the heavy-atom substructure. MRPM is well suited to proteins undergoing large conformational changes where multiple search models should be considered, and it enables the identification of weak but correct molecular-replacement solutions with maximum contrast to prime experimental phasing efforts.
Exploring the relationship of decentering to health related concepts and cognitive and metacognitive processes in a student sample
Decentering, a central change strategy of Mindfulness-Based Cognitive Therapy, is a process of stepping outside of one’s own mental events leading to an objective and non-judging stance towards the self. The study aimed at investigating associated mechanisms of decentering. The present study investigated the relation of decentering, operationalized by means of the German Version of the Experiences Questionnaire, to severity of depressive symptoms, assessed by the adaptive Rasch-based depression screening, and self-focussed attention, assessed by the Questionnaire of Dysfunctional and Functional Self-Consciousness. Furthermore, the relationship between decentering and a) the ability to shift and allocate attention by means of the Stroop test, and b) metacognitive monitoring, i.e. the absolute difference between judged and real task performance, was investigated. These relationships were examined in 55 healthy students using Pearson’s correlations. In line with our assumptions, higher decentering scores were significantly associated with lower scores on severity of depressive symptoms, with higher functional- and lower dysfunctional self-focussed attention. Contrary to our expectations, results neither indicated a relationship between decentering and attention ability, nor between decentering and metacognitive monitoring. The present results suggest that decentering is associated with concepts of mental health (i.e. less severity of depressive symptoms and higher functional self-focussed attention). Overall, the concept decentering seems to be mainly composed of self-focussed aspects when investigated in a healthy sample without intervention. Further investigations of associated concepts of decentering should consider aspects of self-relevance and emotional valence.
Complete Genome Sequence of Nitrosomonas ureae Strain Nm10, an Oligotrophic Group 6a Nitrosomonad
The complete genome of Nitrosomonas ureae strain Nm10, a mesophilic betaproteobacterial ammonia oxidizer isolated from Mediterranean soils in Sardinia, Italy, is reported here. This genome represents a cluster 6a nitrosomonad.
Endocrine Disruption: Computational Perspectives on Human Sex Hormone Binding Globulin and Phthalate Plasticizers
Phthalates are a class of high volume production chemicals used as plasticizers for household and industrial use. Several members of this chemical family have endocrine disrupting activity. Owing to ubiquitous environmental distribution and exposure of human population at all stages of life, phthalate contamination is a continuous global public health problem. Clinical and experimental studies have indicated that several phthalates are associated with adverse effects on development and function of human and animal systems especially the reproductive system and exposures during pregnancy and early childhood are by far of utmost concern. Sex hormone-binding globulin (SHBG) is a plasma carrier protein that binds androgens and estrogens and represents a potential target for phthalate endocrine disruptor function in the body. In the present study, the binding mechanism of the nine phthalates i.e. DMP, DBP, DIBP, BBP, DNHP, DEHP, DNOP, DINP, DIDP with human SHBG was delineated by molecular docking simulation. Docking complexes of the nine phthalates displayed interactions with 15–31 amino acid residues of SHBG and a commonality of 55–95% interacting residues between natural ligand of SHBG, dihydrotestosterone, and the nine phthalate compounds was observed. The binding affinity values were more negative for long chain phthalates DEHP, DNOP, DINP, and DIDP compared to short chain phthalates such as DMP and DBP. The Dock score and Glide score values were also higher for long chain phthalates compared to short chain phthalates. Hence, overlapping of interacting amino acid residues between phthalate compounds and natural ligand, dihydrotestosterone, suggested potential disrupting activity of phthalates in the endocrine homeostasis function of SHBG, with long chain phthalates expected to be more potent than the short chain phthalates.
Complete Coding Genome Sequence of a Putative Novel Teschovirus Serotype 12 Strain
Porcine teschoviruses are ubiquitous and prevalent viruses generally harmless to their hosts, the suids. Here, we report the first complete coding genome sequence of a putative new serotype of porcine teschovirus (PTV-12), strain CC25, isolated from fecal material from a healthy pig in Spain.
Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay
Autophagy is required for the homeostasis of cellular material and is proposed to be involved in many aspects of health. Defects in the autophagy pathway have been observed in neurodegenerative disorders; however, no genetically-inherited pathogenic mutations in any of the core autophagy-related (ATG) genes have been reported in human patients to date. We identified a homozygous missense mutation, changing a conserved amino acid, in ATG5 in two siblings with congenital ataxia, mental retardation, and developmental delay. The subjects' cells display a decrease in autophagy flux and defects in conjugation of ATG12 to ATG5. The homologous mutation in yeast demonstrates a 30-50% reduction of induced autophagy. Flies in which Atg5 is substituted with the mutant human ATG5 exhibit severe movement disorder, in contrast to flies expressing the wild-type human protein. Our results demonstrate the critical role of autophagy in preventing neurological diseases and maintaining neuronal health. DOI: http://dx.doi.org/10.7554/eLife.12245.001 Ataxia is a rare disease that affects balance and co-ordination, leading to difficulties in walking and other movements. The disease mostly affects adults, but some children are born with it and they often have additional cognitive and developmental problems. Mutations in at least 60 genes are known to be able to cause ataxia, but it is thought that there are still more to be found. Kim, Sandford et al. studied two siblings with the childhood form of ataxia and found that they both had a mutation in a gene called ATG5. The protein produced by the mutant ATG5 gene was less able to interact with another protein called ATG12. Furthermore, the cells of both children had defects in a process called autophagy – which destroys old and faulty proteins to prevent them accumulating and causing damage to the cell. Next, Kim, Sandford et al. examined the effect of this mutation in baker’s yeast cells. Cells with a mutation in the yeast equivalent of human ATG5 had lower levels of autophagy than normal cells. Further experiments used fruit flies that lacked fly Atg5, which were unable to fly or walk properly. Inserting the normal form of human ATG5 into the flies restored normal movement, but the mutant form of the gene had less of an effect. These findings suggest that a mutation in ATG5 can be responsible for the symptoms of childhood ataxia. Kim, Sandford et al. think that other people with severe ataxia may have mutations in genes involved in autophagy. Therefore, the next step is to study autophagy in cells from many other ataxia patients. DOI: http://dx.doi.org/10.7554/eLife.12245.002
Changes of diet and dominant intestinal microbes in farmland frogs
Agricultural activities inevitably result in anthropogenic interference with natural habitats. The diet and the gut microbiota of farmland wildlife can be altered due to the changes in food webs within agricultural ecosystems. In this work, we compared the diet and intestinal microbiota of the frog Fejervarya limnocharis in natural and farmland habitats in order to understand how custom farming affects the health of in vivo microbial ecosystems. The occurrence, abundance, and the numbers of prey categories of stomach content were significantly different between the frogs inhabiting natural and farmland habitats. In addition, differences in the abundance, species richness, and alpha-diversity of intestinal microbial communities were also statistically significant. The microbial composition, and particularly the composition of dominant microbes living in intestines, indicated that the land use practices might be one of factors affecting the gut microbial community composition. Although the first three dominant microbial phyla Bacteroidetes, Firmicutes, and Proteobacteria found in the intestines of frogs were classified as generalists among habitats, the most dominant gut bacterial phylum Bacteroidetes in natural environments was replaced by the microbial phylum Firmicutes in farmland frogs. Increased intestinal microbial richness of the farmland frogs, which is mostly contributed by numerous microbial species of Proteobacteria, Actinobacteria, Acidobacteria, and Planctomycetes, not only reflects the possible shifts in microbial community composition through the alteration of external ecosystem, but also indicates the higher risk of invasion by disease-related microbes. This study indicates that anthropogenic activities, such as the custom farming, have not only affected the food resources of frogs, but also influenced the health and in vivo microbial ecosystem of wildlife. The online version of this article (doi:10.1186/s12866-016-0660-4) contains supplementary material, which is available to authorized users.
Walking in School Aged Children in a Dual Task Paradigm Is Related to Age But Not to Cognition, Motor Behavior, Injuries, or Psychosocial Functioning
Age-dependent gait characteristics and associations with cognition, motor behavior, injuries, and psychosocial functioning were investigated in 138 typically developing children aged 6.7–13.2 years (M = 10.0 years). Gait velocity, normalized velocity, and variability were measured using the walkway system GAITRite without an additional task (single task) and while performing a motor or cognitive task (dual task). Assessment of children’s cognition included tests for intelligence and executive functions; parents reported on their child’s motor behavior, injuries, and psychosocial functioning. Gait variability (an index of gait regularity) decreased with increasing age in both single- and dual-task walking. Dual-task gait decrements were stronger when children walked in the motor compared to the cognitive dual-task condition and decreased with increasing age in both dual-task conditions. Gait alterations from single- to dual-task conditions were not related to children’s cognition, motor behavior, injuries, or psychosocial functioning.
Association of Cytotoxic T Lymphocyte Antigen 4 (CTLA4) and Thyroglobulin (TG) Genetic Variants with Autoimmune Hypothyroidism
Autoimmune hypothyroidism is known to be caused by immune responses related to the thyroid gland and its immunological feature includes presence of autoimmune antibodies. Therefore the aim was to analyze presence of anti-TPO antibodies in hypothyroidism patients in Gujarat. Cytotoxic T-Lymphocyte Antigen 4 (CTLA4) is one of the susceptibility genes for various autoimmune diseases. Hence, exon1 +49A/G and 3’UTR CT60A/G single nucleotide polymorphisms (SNPs) in CTLA4 and its mRNA expression levels were investigated in autoimmune hypothyroidism patients. Thyroglobulin (TG) is known to be associated with autoimmune thyroid disorders and thus exon 33 (E33) SNP in TG was investigated. We analyzed the presence of anti-TPO antibodies in the plasma samples of 84 hypothyroidism patients and 62 controls by ELISA. PCR-RFLP technique was used for genotyping of polymorphisms. sCTLA4 and flCTLA4 mRNA expression levels were assessed by real time PCR. 59.52% of hypothyroid patients had anti-TPO antibodies in their circulation. The genotype and allele frequencies differed significantly for +49A/G (p = 0.0004 for +49AG, p = 0.0019 for +49GG & p = 0.0004 for allele), CT60 (p = 0.0110 for CT60AG, p = 0.0005 for CT60GG & p<0.0001 for allele) and TG E33 (p = 0.0003 for E33TC p<0.0001 for E33CC& p<0.0001 for allele) SNPs between patients and controls. Patients had significantly decreased mRNA levels of both sCTLA4 (p = 0.0017) and flCTLA4 (p<0.0001) compared to controls. +49A/G and CT60 polymorphisms of CTLA4 were in moderate linkage disequilibrium. Logistic regression analysis indicated significant association of CT49A/G, CT60A/G and TG exon 33 polymorphisms with susceptibility to autoimmune hypothyroidism when adjusted for age and gender. Our results suggest +49A/G and CT60 polymorphism of CTLA4 and E33 polymorphism of TG may be genetic risk factors for autoimmune hypothyroidism susceptibility and down regulation of both forms of CTLA4 advocates the crucial role of CTLA4 in pathogenesis of autoimmune hypothyroidism.
A first in human phase 1 trial to evaluate the safety and immunogenicity of the candidate tuberculosis vaccine MVA85A IMX313, administered to BCG vaccinated adults
There is an urgent need for a new and effective tuberculosis vaccine because BCG does not sufficiently prevent pulmonary disease. IMX313 is a novel carrier protein designed to improve cellular and humoral immunity. MVA85A-IMX313 is a novel vaccine candidate designed to boost immunity primed by bacillus Calmette-Guérin (BCG) that has been immunogenic in pre-clinical studies. This is the first evaluation of IMX313 delivered as MVA85A-IMX313 in humans. In this phase 1, open-label first-in-human trial, 30 healthy previously BCG-vaccinated adults were enrolled into three treatment groups and vaccinated with low dose MVA85A-IMX313 (group A), standard dose MVA85A-IMX313 (group B), or MVA85A (group C). Volunteers were followed up for 6 months for safety and immunogenicity assessment. The majority of adverse events were mild and there were no vaccine-related serious AEs. Both MVA85A-IMX313 and MVA85A induced a significant increase in IFN-γ ELISpot responses. There were no significant differences between the Ag85A ELISpot and intracellular cytokine responses between the two study groups B (MVA85A-IMX313) and C (MVA85A) at any time point post-vaccination. MVA85A-IMX313 was well tolerated and immunogenic. There was no significant difference in the number of vaccine-related, local or systemic adverse reactions between MVA85A and MVA85A-IMX313 groups. The mycobacteria-specific cellular immune responses induced by MVA85A-IMX313 were not significantly different to those detected in the MVA85A group. In light of this encouraging safety data, further work to improve the potency of molecular adjuvants like IMX313 is merited. This trial was registered on clinicatrials.gov ref. NCT01879163.
Development of a Microemulsion Formulation for Antimicrobial SecA Inhibitors
In our previous study, we have identified five antimicrobial small molecules via structure based design, which inhibit SecA of Candidatus Liberibacter asiaticus (Las). SecA is a critical protein translocase ATPase subunit and is involved in pre-protein translocation across and integration into the cellular membrane in bacteria. In this study, eleven compounds were identified using similarity search method based on the five lead SecA inhibitors identified previously. The identified SecA inhibitors have poor aqueous solubility. Thus a microemulsion master mix (MMX) was developed to address the solubility issue and for application of the antimicrobials. MMX consists of N-methyl-2-pyrrolidone and dimethyl sulfoxide as solvent and co-solvent, as well as polyoxyethylated castor oil, polyalkylene glycol, and polyoxyethylene tridecyl ether phosphate as surfactants. MMX has significantly improved the solubility of SecA inhibitors and has no or little phytotoxic effects at concentrations less than 5.0% (v/v). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the SecA inhibitors and streptomycin against eight bacteria including Agrobacterium tumefaciens, Liberibacter crescens, Rhizobium etli, Bradyrhizobium japonicum, Mesorhizobium loti, and Sinorhizobium meliloti phylogenetically related to Las were determined using the broth microdilution method. MIC and MBC results showed that the 16 SecA inhibitors have antibacterial activities comparable to that of streptomycin. Overall, we have identified 11 potent SecA inhibitors using similarity search method. We have developed a microemulsion formulation for SecA inhibitors which improved the antimicrobial activities of SecA inhibitors.
Molecular Phylogeny and Morphological Analysis Support a New Species and New Synonymy in Iranian Astragalus (Leguminosae)
As a result of a taxonomic and phylogenetic revision of Astragalus section Hymenostegis we identified a new species of Astragalus from northwestern Iran, namely A. remotispicatus spec. nov., which is described and illustrated here. It is morphologically similar to A. karl-heinzii in possessing a lax inflorescence. Phylogenetic inference of the nuclear ribosomal DNA internal transcribed spacer (ITS) region support A. remotispicatus as a clearly distinct species within the lax-inflorescence group of this section. Also the placement of A. sciureus var. subsessilis was found to be wrong and this taxon should be treated as a synonym within A. kohrudicus.
The Effects of Hyperbaric Oxygen Therapy on Post Training Recovery in Jiu Jitsu Athletes
The present study aimed to evaluate the effects of using hyperbaric oxygen therapy during post-training recovery in jiu-jitsu athletes. Eleven experienced Brazilian jiu-jitsu athletes were investigated during and following two training sessions of 1h30min. Using a cross-over design, the athletes were randomly assigned to passive recovery for 2 hours or to hyperbaric oxygen therapy (OHB) for the same duration. After a 7-day period, the interventions were reversed. Before, immediately after, post 2 hours and post 24 hours, blood samples were collected to examine hormone concentrations (cortisol and total testosterone) and cellular damage markers [creatine kinase (CK), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH)]. Moreover, the rating of perceived exertion (RPE) and recovery (RPR) scales were applied. Final lactate [La] values (control: 11.9 ± 1.4 mmol/L, OHB: 10.2 ± 1.4 mmol/L) and RPE [control: 14 (13–17 a.u.), OHB: 18 (17–20 a.u.)] were not significantly different following the training sessions. Furthermore, there was no difference between any time points for blood lactate and RPE in the two experimental conditions (P>0.05). There was no effect of experimental conditions on cortisol (F1,20 = 0.1, P = 0.793, η2 = 0.00, small), total testosterone (F1,20 = 0.03, P = 0.877, η2 = 0.00, small), CK (F1,20 = 0.1, P = 0.759, η2 = 0.01, small), AST (F1,20 = 0.1, P = 0.761, η2 = 0.01, small), ALT (F1,20 = 0.0, P = 0.845, η2 = 0.00, small) or LDH (F1,20 = 0.7, P = 0.413, η2 = 0.03, small). However, there was a difference between the two experimental conditions in RPR with higher values at post 2 h and 24 h in OHB when compared to the control condition (P<0.05). Thus, it can be concluded that OHB exerts no influence on the recovery of hormonal status or cellular damage markers. Nonetheless, greater perceived recovery, potentially due to the placebo effect, was evident following the OHB condition.
Structure of ThiM from Vitamin B1 biosynthetic pathway of Staphylococcus aureus – Insights into a novel pro drug approach addressing MRSA infections
Infections caused by the methicillin-resistant Staphylococcus aureus (MRSA) are today known to be a substantial threat for global health. Emerging multi-drug resistant bacteria have created a substantial need to identify and discover new drug targets and to develop novel strategies to treat bacterial infections. A promising and so far untapped antibiotic target is the biosynthesis of vitamin B1 (thiamin). Thiamin in its activated form, thiamin pyrophosphate, is an essential co-factor for all organisms. Therefore, thiamin analogous compounds, when introduced into the vitamin B1 biosynthetic pathway and further converted into non-functional co-factors by the bacterium can function as pro-drugs which thus block various co-factor dependent pathways. We characterized one of the key enzymes within the S. aureus vitamin B1 biosynthetic pathway, 5-(hydroxyethyl)-4-methylthiazole kinase (SaThiM; EC 2.7.1.50), a potential target for pro-drug compounds and analyzed the native structure of SaThiM and complexes with the natural substrate 5-(hydroxyethyl)-4-methylthiazole (THZ) and two selected substrate analogues.
Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function
Metzincin metalloproteases have major roles in intercellular communication by modulating the function of membrane proteins. One of the proteases is the a-disintegrin-and-metalloprotease 10 (ADAM10) which acts as alpha-secretase of the Alzheimer's disease amyloid precursor protein. ADAM10 is also required for neuronal network functions in murine brain, but neuronal ADAM10 substrates are only partly known. With a proteomic analysis of Adam10-deficient neurons we identified 91, mostly novel ADAM10 substrate candidates, making ADAM10 a major protease for membrane proteins in the nervous system. Several novel substrates, including the neuronal cell adhesion protein NrCAM, are involved in brain development. Indeed, we detected mistargeted axons in the olfactory bulb of conditional ADAM10-/- mice, which correlate with reduced cleavage of NrCAM, NCAM and other ADAM10 substrates. In summary, the novel ADAM10 substrates provide a molecular basis for neuronal network dysfunctions in conditional ADAM10-/- mice and demonstrate a fundamental function of ADAM10 in the brain. DOI: http://dx.doi.org/10.7554/eLife.12748.001 Several neurodegenerative disorders, including Alzheimer’s disease, arise when protein-cutting enzymes process proteins in the wrong way. The resulting protein fragments can accumulate in nerve cells and cause them to die, leading to symptoms such as memory loss. In the case of Alzheimer’s disease the toxic protein fragment – called amyloid beta – can be produced when one enzyme cuts the amyloid precursor protein. However, the amyloid beta fragment is not made when a different enzyme called ADAM10 cuts the amyloid precursor protein first. There has been a lot of interest in finding drugs that activate ADAM10 to treat Alzheimer’s disease. However, ADAM10 also cuts other proteins on the surface of cells and it is important to know about these proteins if ADAM10 is going to be successfully targeted by a drug. To tackle this issue, Kuhn et al. have now searched for new proteins (or ‘substrates’) that are cut by ADAM10 in mouse nerve cells. The experiments identified proteins that were cut in normal nerve cells, but remained unprocessed in cells where the gene for ADAM10 had been deleted. This search uncovered almost 100 new substrates of ADAM10 that were then validated using biochemical techniques. Among these substrates were many proteins that are normally anchored into the membranes of nerve cells and involved in guiding and positioning these cells in the brain so that they can connect and communicate with each other. Kuhn et al. then deleted the gene for ADAM10 only in the frontmost part of the mouse brain. This led to the nerve cells forming abnormal networks in the regions of the brain that process smells and emotions. Overall the experiments proved that ADAM10 is important not only for the prevention of Alzheimer’s disease, but also for the normal development of the brain. Future studies could now explore how stimulating ADAM10 affects the levels of its substrates. Also, a better understanding of the substrates of ADAM10 may be useful both to predict side effects of drugs that activate ADAM10 and to monitor patients who are responding well to these drugs. DOI: http://dx.doi.org/10.7554/eLife.12748.002
Silicon moderated the K deficiency by improving the plant water status in sorghum
Although silicon (Si) has been widely reported to alleviate plant nutrient deficiency, the underlying mechanism in potassium (K) deficiency is poorly understood. In this study, sorghum seedlings were treated with Si under a K deficiency condition for 15 days. Under control conditions, plant growth was not affected by Si application. The growth and water status were reduced by K-deficient stress, but Si application significantly alleviated these decreases. The leaf gas exchanges, whole-plant hydraulic conductance (Kplant), and root hydraulic conductance (Lpr) were reduced by K deficiency, but Si application moderated the K-deficiency-induced reductions, suggesting that Si alleviated the plant hydraulic conductance. In addition, 29% of Si-alleviated transpiration was eliminated by HgCl2 treatment, suggesting that aquaporin was not the primary cause for the reversal of plant hydraulic conductance. Moreover, the K+ concentration in xylem sap was significantly increased and the xylem sap osmotic potential was decreased by Si application, suggesting that the major cause of Si-induced improvement in hydraulic conductance could be ascribed to the enhanced xylem sap K+ concentration, which increases the osmotic gradient and xylem hydraulic conductance. The results of this study show that Si mediates K+ accumulation in xylem, which ultimately alleviates the plant-water status under the K-deficient condition.
Genome wide association mapping for root traits in a panel of rice accessions from Vietnam
Despite recent sequencing efforts, local genetic resources remain underexploited, even though they carry alleles that can bring agronomic benefits. Taking advantage of the recent genotyping with 22,000 single-nucleotide polymorphism markers of a core collection of 180 Vietnamese rice varieties originating from provinces from North to South Vietnam and from different agrosystems characterized by contrasted water regimes, we have performed a genome-wide association study for different root parameters. Roots contribute to water stress avoidance and are a still underexploited target for breeding purpose due to the difficulty to observe them. The panel of 180 rice varieties was phenotyped under greenhouse conditions for several root traits in an experimental design with 3 replicates. The phenotyping system consisted of long plastic bags that were filled with sand and supplemented with fertilizer. Root length, root mass in different layers, root thickness, and the number of crown roots, as well as several derived root parameters and shoot traits, were recorded. The results were submitted to association mapping using a mixed model involving structure and kinship to enable the identification of significant associations. The analyses were conducted successively on the whole panel and on its indica (115 accessions) and japonica (64 accessions) subcomponents. The two associations with the highest significance were for root thickness on chromosome 2 and for crown root number on chromosome 11. No common associations were detected between the indica and japonica subpanels, probably because of the polymorphism repartition between the subspecies. Based on orthology with Arabidopsis, the possible candidate genes underlying the quantitative trait loci are reviewed. Some of the major quantitative trait loci we detected through this genome-wide association study contain promising candidate genes encoding regulatory elements of known key regulators of root formation and development. The online version of this article (doi:10.1186/s12870-016-0747-y) contains supplementary material, which is available to authorized users.